BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31911439)

  • 21. Classification of proteins inducing liquid-liquid phase separation: sequential, structural and functional characterization.
    Ozawa Y; Anbo H; Ota M; Fukuchi S
    J Biochem; 2023 Mar; 173(4):255-264. PubMed ID: 36575582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface.
    Song J
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology.
    Peng PH; Hsu KW; Wu KJ
    Am J Cancer Res; 2021; 11(8):3766-3776. PubMed ID: 34522448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Latest Findings on Phase Separation of Cytomechanical Proteins].
    Luo G; Zhou C
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):19-23. PubMed ID: 38322526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins.
    Dannenhoffer-Lafage T; Best RB
    J Phys Chem B; 2021 Apr; 125(16):4046-4056. PubMed ID: 33876938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications.
    Cinar H; Fetahaj Z; Cinar S; Vernon RM; Chan HS; Winter RHA
    Chemistry; 2019 Oct; 25(57):13049-13069. PubMed ID: 31237369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?
    Zhou HX; Nguemaha V; Mazarakos K; Qin S
    Trends Biochem Sci; 2018 Jul; 43(7):499-516. PubMed ID: 29716768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes.
    Ning W; Guo Y; Lin S; Mei B; Wu Y; Jiang P; Tan X; Zhang W; Chen G; Peng D; Chu L; Xue Y
    Nucleic Acids Res; 2020 Jan; 48(D1):D288-D295. PubMed ID: 31691822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu.
    Poudyal M; Patel K; Gadhe L; Sawner AS; Kadu P; Datta D; Mukherjee S; Ray S; Navalkar A; Maiti S; Chatterjee D; Devi J; Bera R; Gahlot N; Joseph J; Padinhateeri R; Maji SK
    Nat Commun; 2023 Oct; 14(1):6199. PubMed ID: 37794023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins.
    Dignon GL; Zheng W; Best RB; Kim YC; Mittal J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9929-9934. PubMed ID: 30217894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory Components on Protein Droplet Formation.
    Nguemaha V; Zhou HX
    Sci Rep; 2018 Apr; 8(1):6728. PubMed ID: 29712961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A High-Throughput Method to Profile Protein Liquid-Liquid Phase Separation.
    Li Y; Gu J; Liu C; Li D
    Methods Mol Biol; 2023; 2563():261-268. PubMed ID: 36227478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.