These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31911667)

  • 1. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism.
    Weivoda MM; Chew CK; Monroe DG; Farr JN; Atkinson EJ; Geske JR; Eckhardt B; Thicke B; Ruan M; Tweed AJ; McCready LK; Rizza RA; Matveyenko A; Kassem M; Andersen TL; Vella A; Drake MT; Clarke BL; Oursler MJ; Khosla S
    Nat Commun; 2020 Jan; 11(1):87. PubMed ID: 31911667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human trabecular bone-derived osteoblasts support human osteoclast formation in vitro in a defined, serum-free medium.
    Atkins GJ; Kostakis P; Welldon KJ; Vincent C; Findlay DM; Zannettino AC
    J Cell Physiol; 2005 Jun; 203(3):573-82. PubMed ID: 15573398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.
    Pereira M; Jeyabalan J; Jørgensen CS; Hopkinson M; Al-Jazzar A; Roux JP; Chavassieux P; Orriss IR; Cleasby ME; Chenu C
    Bone; 2015 Dec; 81():459-467. PubMed ID: 26314515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose metabolism in bone.
    Karner CM; Long F
    Bone; 2018 Oct; 115():2-7. PubMed ID: 28843700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.
    Hansen MSS; Tencerova M; Frølich J; Kassem M; Frost M
    Basic Clin Pharmacol Toxicol; 2018 Jan; 122(1):25-37. PubMed ID: 28722834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation.
    Häusler KD; Horwood NJ; Chuman Y; Fisher JL; Ellis J; Martin TJ; Rubin JS; Gillespie MT
    J Bone Miner Res; 2004 Nov; 19(11):1873-81. PubMed ID: 15476588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms in coupling of bone formation to resorption.
    Martin T; Gooi JH; Sims NA
    Crit Rev Eukaryot Gene Expr; 2009; 19(1):73-88. PubMed ID: 19191758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Metabolism of Bone.
    Motyl KJ; Guntur AR; Carvalho AL; Rosen CJ
    Toxicol Pathol; 2017 Oct; 45(7):887-893. PubMed ID: 29096593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone.
    Sims SM; Panupinthu N; Lapierre DM; Pereverzev A; Dixon SJ
    Biochim Biophys Acta; 2013 Jan; 1831(1):109-16. PubMed ID: 22892679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast and osteoclast crosstalks: from OAF to Ephrin.
    Tamma R; Zallone A
    Inflamm Allergy Drug Targets; 2012 Jun; 11(3):196-200. PubMed ID: 22280242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice.
    Yang P; Lv S; Wang Y; Peng Y; Ye Z; Xia Z; Ding G; Cao X; Crane JL
    Bone; 2018 Sep; 114():1-13. PubMed ID: 29800693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic implications of suppressing osteoclast formation versus function.
    Teitelbaum SL
    Rheumatology (Oxford); 2016 Dec; 55(suppl 2):ii61-ii63. PubMed ID: 27856662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys.
    Kostenuik PJ; Smith SY; Samadfam R; Jolette J; Zhou L; Ominsky MS
    J Bone Miner Res; 2015 Apr; 30(4):657-69. PubMed ID: 25369992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling.
    Walker EC; McGregor NE; Poulton IJ; Pompolo S; Allan EH; Quinn JM; Gillespie MT; Martin TJ; Sims NA
    J Bone Miner Res; 2008 Dec; 23(12):2025-32. PubMed ID: 18665789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Complex Role for Lipocalin 2 in Bone Metabolism: Global Ablation in Mice Induces Osteopenia Caused by an Altered Energy Metabolism.
    Capulli M; Ponzetti M; Maurizi A; Gemini-Piperni S; Berger T; Mak TW; Teti A; Rucci N
    J Bone Miner Res; 2018 Jun; 33(6):1141-1153. PubMed ID: 29444358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone.
    Cappariello A; Loftus A; Muraca M; Maurizi A; Rucci N; Teti A
    J Bone Miner Res; 2018 Mar; 33(3):517-533. PubMed ID: 29091316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Modulation of Osteoblasts and Osteoclasts in Type 2 Diabetes.
    Rathinavelu S; Guidry-Elizondo C; Banu J
    J Diabetes Res; 2018; 2018():6354787. PubMed ID: 30525054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boning up on ephrin signaling.
    Mundy GR; Elefteriou F
    Cell; 2006 Aug; 126(3):441-3. PubMed ID: 16901775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.
    Simon D; Derer A; Andes FT; Lezuo P; Bozec A; Schett G; Herrmann M; Harre U
    Bone; 2017 Dec; 105():35-41. PubMed ID: 28822790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.