These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31912039)
1. Toward Green Production of Chewing Gum and Diet: Complete Hydrogenation of Xylose to Xylitol over Ruthenium Composite Catalysts under Mild Conditions. Liu CJ; Zhu NN; Ma JG; Cheng P Research (Wash D C); 2019; 2019():5178573. PubMed ID: 31912039 [TBL] [Abstract][Full Text] [Related]
2. Efficient Synthesis of Sugar Alcohols under Mild Conditions Using a Novel Sugar-Selective Hydrogenation Catalyst Based on Ruthenium Valence Regulation. Zhang XJ; Li HW; Bin W; Dou BJ; Chen DS; Cheng XP; Li M; Wang HY; Chen KQ; Jin LQ; Liu ZQ; Zheng YG J Agric Food Chem; 2020 Nov; 68(44):12393-12399. PubMed ID: 33095018 [TBL] [Abstract][Full Text] [Related]
3. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges. Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143 [TBL] [Abstract][Full Text] [Related]
4. Gundekari S; Desai H; Ravi K; Mitra J; Srinivasan K Front Chem; 2020; 8():525277. PubMed ID: 33324606 [TBL] [Abstract][Full Text] [Related]
5. Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts. Vilcocq L; Paez A; Freitas VDS; Veyre L; Fongarland P; Philippe R RSC Adv; 2021 Dec; 11(62):39387-39398. PubMed ID: 35492485 [TBL] [Abstract][Full Text] [Related]
6. Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst. Xia H; Zhang L; Hu H; Zuo S; Yang L Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31905858 [TBL] [Abstract][Full Text] [Related]
7. Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study. Akpe SG; Choi SH; Ham HC Phys Chem Chem Phys; 2021 Dec; 23(46):26195-26208. PubMed ID: 34812819 [TBL] [Abstract][Full Text] [Related]
8. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene. Li X; Zhao S; Zhang W; Liu Y; Li R Dalton Trans; 2016 Oct; 45(39):15595-15602. PubMed ID: 27711753 [TBL] [Abstract][Full Text] [Related]
9. Bioconversion of lignocellulosic biomass to xylitol: An overview. Venkateswar Rao L; Goli JK; Gentela J; Koti S Bioresour Technol; 2016 Aug; 213():299-310. PubMed ID: 27142629 [TBL] [Abstract][Full Text] [Related]
10. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst. Remón J; Sevilla-Gasca R; Frecha E; Pinilla JL; Suelves I Sci Total Environ; 2022 Jun; 825():154044. PubMed ID: 35202688 [TBL] [Abstract][Full Text] [Related]
11. Microwave-Assisted Synthesis of Zirconium Phosphate Nanoplatelet-Supported Ru-Anadem Nanostructures and Their Catalytic Study for the Hydrogenation of Acetophenone. Li X; Ding G; Thompson BL; Hao L; Deming DA; Heiden ZM; Zhang Q ACS Appl Mater Interfaces; 2020 Jul; 12(27):30670-30679. PubMed ID: 32515936 [TBL] [Abstract][Full Text] [Related]
12. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon. Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491 [TBL] [Abstract][Full Text] [Related]
13. Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation. Takata E; Tsuruoka T; Tsutsumi K; Tsutsumi Y; Tabata K Bioresour Technol; 2014 Sep; 167():74-80. PubMed ID: 24971947 [TBL] [Abstract][Full Text] [Related]
14. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel R; Abdur-Rashid K; Faatz M; Hadzovic A; Lough AJ; Morris RH J Am Chem Soc; 2005 Feb; 127(6):1870-82. PubMed ID: 15701022 [TBL] [Abstract][Full Text] [Related]
15. Supported gold catalysis: from small molecule activation to green chemical synthesis. Liu X; He L; Liu YM; Cao Y Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524 [TBL] [Abstract][Full Text] [Related]
16. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Mitsudome T; Takahashi Y; Mizugaki T; Jitsukawa K; Kaneda K Angew Chem Int Ed Engl; 2014 Aug; 53(32):8348-51. PubMed ID: 25087622 [TBL] [Abstract][Full Text] [Related]
17. Xylitol production from a mutant strain of Candida tropicalis. Jeon YJ; Shin HS; Rogers PL Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342 [TBL] [Abstract][Full Text] [Related]
18. Novel pyrazolylphosphite- and pyrazolylphosphinite-ruthenium(ii) complexes as catalysts for hydrogenation of acetophenone. Amenuvor G; Obuah C; Nordlander E; Darkwa J Dalton Trans; 2016 Sep; 45(34):13514-24. PubMed ID: 27504937 [TBL] [Abstract][Full Text] [Related]
19. A well-fabricated Ru@C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene. Wang Z; Zhang J; Yan L; Zhao B; Zheng L; Guo H; Yue Y; Han D; Chen X; Li R Phys Chem Chem Phys; 2023 Mar; 25(12):8556-8563. PubMed ID: 36883834 [TBL] [Abstract][Full Text] [Related]
20. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]