BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31912039)

  • 1. Toward Green Production of Chewing Gum and Diet: Complete Hydrogenation of Xylose to Xylitol over Ruthenium Composite Catalysts under Mild Conditions.
    Liu CJ; Zhu NN; Ma JG; Cheng P
    Research (Wash D C); 2019; 2019():5178573. PubMed ID: 31912039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Synthesis of Sugar Alcohols under Mild Conditions Using a Novel Sugar-Selective Hydrogenation Catalyst Based on Ruthenium Valence Regulation.
    Zhang XJ; Li HW; Bin W; Dou BJ; Chen DS; Cheng XP; Li M; Wang HY; Chen KQ; Jin LQ; Liu ZQ; Zheng YG
    J Agric Food Chem; 2020 Nov; 68(44):12393-12399. PubMed ID: 33095018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges.
    Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C
    ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gundekari S; Desai H; Ravi K; Mitra J; Srinivasan K
    Front Chem; 2020; 8():525277. PubMed ID: 33324606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts.
    Vilcocq L; Paez A; Freitas VDS; Veyre L; Fongarland P; Philippe R
    RSC Adv; 2021 Dec; 11(62):39387-39398. PubMed ID: 35492485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst.
    Xia H; Zhang L; Hu H; Zuo S; Yang L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31905858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study.
    Akpe SG; Choi SH; Ham HC
    Phys Chem Chem Phys; 2021 Dec; 23(46):26195-26208. PubMed ID: 34812819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene.
    Li X; Zhao S; Zhang W; Liu Y; Li R
    Dalton Trans; 2016 Oct; 45(39):15595-15602. PubMed ID: 27711753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of lignocellulosic biomass to xylitol: An overview.
    Venkateswar Rao L; Goli JK; Gentela J; Koti S
    Bioresour Technol; 2016 Aug; 213():299-310. PubMed ID: 27142629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst.
    Remón J; Sevilla-Gasca R; Frecha E; Pinilla JL; Suelves I
    Sci Total Environ; 2022 Jun; 825():154044. PubMed ID: 35202688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-Assisted Synthesis of Zirconium Phosphate Nanoplatelet-Supported Ru-Anadem Nanostructures and Their Catalytic Study for the Hydrogenation of Acetophenone.
    Li X; Ding G; Thompson BL; Hao L; Deming DA; Heiden ZM; Zhang Q
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30670-30679. PubMed ID: 32515936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.
    Liu X; Zhang B; Fei B; Chen X; Zhang J; Mu X
    Faraday Discuss; 2017 Sep; 202():79-98. PubMed ID: 28650491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation.
    Takata E; Tsuruoka T; Tsutsumi K; Tsutsumi Y; Tabata K
    Bioresour Technol; 2014 Sep; 167():74-80. PubMed ID: 24971947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst?
    Abbel R; Abdur-Rashid K; Faatz M; Hadzovic A; Lough AJ; Morris RH
    J Am Chem Soc; 2005 Feb; 127(6):1870-82. PubMed ID: 15701022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts.
    Mitsudome T; Takahashi Y; Mizugaki T; Jitsukawa K; Kaneda K
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8348-51. PubMed ID: 25087622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel pyrazolylphosphite- and pyrazolylphosphinite-ruthenium(ii) complexes as catalysts for hydrogenation of acetophenone.
    Amenuvor G; Obuah C; Nordlander E; Darkwa J
    Dalton Trans; 2016 Sep; 45(34):13514-24. PubMed ID: 27504937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A well-fabricated Ru@C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene.
    Wang Z; Zhang J; Yan L; Zhao B; Zheng L; Guo H; Yue Y; Han D; Chen X; Li R
    Phys Chem Chem Phys; 2023 Mar; 25(12):8556-8563. PubMed ID: 36883834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production.
    Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L
    ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.