These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
880 related articles for article (PubMed ID: 31912722)
1. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722 [TBL] [Abstract][Full Text] [Related]
2. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. Lu Y; Yue Y; Ding Q; Mei C; Xu X; Wu Q; Xiao H; Han J ACS Appl Mater Interfaces; 2021 Oct; 13(42):50281-50297. PubMed ID: 34637615 [TBL] [Abstract][Full Text] [Related]
3. A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. Zhang Y; Ren E; Li A; Cui C; Guo R; Tang H; Xiao H; Zhou M; Qin W; Wang X; Liu L J Mater Chem B; 2021 Jan; 9(3):719-730. PubMed ID: 33306084 [TBL] [Abstract][Full Text] [Related]
4. Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. Ma W; Cao W; Lu T; Jiang Z; Xiong R; Samal SK; Huang C ACS Appl Mater Interfaces; 2021 Dec; 13(48):58048-58058. PubMed ID: 34842414 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. Liu X; Ren Z; Liu F; Zhao L; Ling Q; Gu H ACS Appl Mater Interfaces; 2021 Mar; 13(12):14612-14622. PubMed ID: 33723988 [TBL] [Abstract][Full Text] [Related]
6. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
7. Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors. Shen J; Lu L; He R; Ye Q; Yuan C; Guo L; Zhao M; Cui B Carbohydr Polym; 2024 Dec; 346():122608. PubMed ID: 39245492 [TBL] [Abstract][Full Text] [Related]
8. A tough, stretchable, adhesive and electroconductive polyacrylamide hydrogel sensor incorporated with sulfonated nanocellulose and carbon nanotubes. Deng W; Zhang Y; Wu M; Liu C; Rahmaninia M; Tang Y; Li B Int J Biol Macromol; 2024 Nov; 279(Pt 2):135165. PubMed ID: 39218191 [TBL] [Abstract][Full Text] [Related]
9. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
10. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
11. Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion-contraction motion monitoring. Zhang W; Xu L; Zhao M; Ma Y; Zheng T; Shi L Soft Matter; 2022 Feb; 18(8):1644-1652. PubMed ID: 35128552 [TBL] [Abstract][Full Text] [Related]
12. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Cao Q; Shu Z; Zhang T; Ji W; Chen J; Wei Y Biomacromolecules; 2022 Jun; 23(6):2603-2613. PubMed ID: 35617102 [TBL] [Abstract][Full Text] [Related]
13. Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Xiao G; Wang Y; Zhang H; Zhu Z; Fu S Int J Biol Macromol; 2021 Feb; 170():272-283. PubMed ID: 33359808 [TBL] [Abstract][Full Text] [Related]
14. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. Deng Z; Hu T; Lei Q; He J; Ma PX; Guo B ACS Appl Mater Interfaces; 2019 Feb; 11(7):6796-6808. PubMed ID: 30673228 [TBL] [Abstract][Full Text] [Related]
15. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403 [TBL] [Abstract][Full Text] [Related]
16. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
18. Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH Shao L; Li Y; Ma Z; Bai Y; Wang J; Zeng P; Gong P; Shi F; Ji Z; Qiao Y; Xu R; Xu J; Zhang G; Wang C; Ma J ACS Appl Mater Interfaces; 2020 Jun; 12(23):26496-26508. PubMed ID: 32406670 [TBL] [Abstract][Full Text] [Related]
19. A highly sensitive strain sensor based on a silica@polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Li Y; Liu C; Lv X; Sun S Soft Matter; 2021 Mar; 17(8):2142-2150. PubMed ID: 33439186 [TBL] [Abstract][Full Text] [Related]
20. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]