BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31912728)

  • 41. Bifunctional metal-organic frameworks for the hydrogenation of nitrophenol using methanol as the hydrogen source.
    Melillo A; García-Vallés C; Ferrer B; Álvaro M; Navalón S; García H
    Org Biomol Chem; 2021 Jan; 19(4):794-800. PubMed ID: 33043920
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Catalytic Activity of Iridium(III) Complexes by Facile Modification of C,N-Bidentate Chelating Pyridylideneamide Ligands.
    Navarro M; Smith CA; Albrecht M
    Inorg Chem; 2017 Oct; 56(19):11688-11701. PubMed ID: 28898071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iridium-Catalyzed Alkene-Selective Transfer Hydrogenation with 1,4-Dioxane as Hydrogen Donor.
    Zhang D; Iwai T; Sawamura M
    Org Lett; 2019 Aug; 21(15):5867-5872. PubMed ID: 31310549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acceptorless Dehydrogenative Cyclization of o-Aminobenzyl Alcohols with Ketones to Quinolines in Water Catalyzed by Water-Soluble Metal-Ligand Bifunctional Catalyst [Cp*(6,6'-(OH)2bpy)(H2O)][OTf]2.
    Wang R; Fan H; Zhao W; Li F
    Org Lett; 2016 Aug; 18(15):3558-61. PubMed ID: 27400132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic investigations of imine hydrogenation catalyzed by dinuclear iridium complexes.
    Martín M; Sola E; Tejero S; López JA; Oro LA
    Chemistry; 2006 May; 12(15):4057-68. PubMed ID: 16534824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bifunctional rhenium complexes for the catalytic transfer-hydrogenation reactions of ketones and imines.
    Landwehr A; Dudle B; Fox T; Blacque O; Berke H
    Chemistry; 2012 Apr; 18(18):5701-14. PubMed ID: 22454240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.
    Paul B; Chakrabarti K; Kundu S
    Dalton Trans; 2016 Jul; 45(27):11162-71. PubMed ID: 27328031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ruthenacycles and Iridacycles as Transfer Hydrogenation Catalysts.
    Ritleng V; de Vries JG
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A New Mechanism of Metal-Ligand Cooperative Catalysis in Transfer Hydrogenation of Ketones.
    Demianets I; Cherepakhin V; Maertens A; Lauridsen PJ; Sharada SM; Williams TJ
    Polyhedron; 2020 May; 182():. PubMed ID: 32410767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Primary amines by transfer hydrogenative reductive amination of ketones by using cyclometalated Ir(III) catalysts.
    Talwar D; Poyatos Salguero N; Robertson CM; Xiao J
    Chemistry; 2014 Jan; 20(1):245-52. PubMed ID: 24516890
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational design of metal-free catalysts for catalytic hydrogenation of imines.
    Zhao L; Li H; Lu G; Wang ZX
    Dalton Trans; 2010 May; 39(17):4038-47. PubMed ID: 20390167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and crystal structure of a water-soluble iridium hydride: a robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds in acidic media.
    Abura T; Ogo S; Watanabe Y; Fukuzumi S
    J Am Chem Soc; 2003 Apr; 125(14):4149-54. PubMed ID: 12670237
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron Group Hydrides in Noyori Bifunctional Catalysis.
    Morris RH
    Chem Rec; 2016 Dec; 16(6):2640-2654. PubMed ID: 27524399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robust cyclometallated Ir(III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions.
    Wu J; Barnard JH; Zhang Y; Talwar D; Robertson CM; Xiao J
    Chem Commun (Camb); 2013 Aug; 49(63):7052-4. PubMed ID: 23812043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iridium-catalyzed asymmetric hydrogenation of 2-pyridyl cyclic imines: a highly enantioselective approach to nicotine derivatives.
    Guo C; Sun DW; Yang S; Mao SJ; Xu XH; Zhu SF; Zhou QL
    J Am Chem Soc; 2015 Jan; 137(1):90-3. PubMed ID: 25548865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of asymmetric hydrogenation of acetophenone catalyzed by chiral eta(6)-arene-N-tosylethylenediamine-ruthenium(II) complexes.
    Sandoval CA; Ohkuma T; Utsumi N; Tsutsumi K; Murata K; Noyori R
    Chem Asian J; 2006 Jul; 1(1-2):102-10. PubMed ID: 17441044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclometallated Imides as Templates for the H-Bond Directed Iridium-Catalyzed Asymmetric Hydrogenation of N-Methyl, N-Alkyl and N-Aryl Imines.
    Wen Y; Fernández-Sabaté M; Lledós A; Sciortino G; Eills J; Marco-Rius I; Riera A; Verdaguer X
    Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202404955. PubMed ID: 38639173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.