These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31913022)

  • 1. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System.
    Cho YS; Kim HR; Ko HS; Jeong SB; Chan Kim B; Jung JH
    ACS Sens; 2020 Feb; 5(2):395-403. PubMed ID: 31913022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection.
    Cho YS; Hong SC; Choi J; Jung JH
    Sens Actuators B Chem; 2019 Apr; 284():525-533. PubMed ID: 32288254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.
    Park CW; Park JW; Lee SH; Hwang J
    Biosens Bioelectron; 2014 Feb; 52():379-83. PubMed ID: 24080217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification.
    Chen Z; Liang Z; Li G; Das R; Chen P; An T
    Sci Total Environ; 2024 Aug; 937():173404. PubMed ID: 38797419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ lysis droplet supply to efficiently extract ATP from dust particles for near-real-time bioaerosol monitoring.
    Kim HR; An S; Hwang J; Park JH; Byeon JH
    J Hazard Mater; 2019 May; 369():684-690. PubMed ID: 30826561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols.
    Liao L; Byeon JH; Park JH
    Environ Res; 2021 Mar; 194():110615. PubMed ID: 33309960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols.
    Zhang Y; Liu B; Tong Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1327-1340. PubMed ID: 36226866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.
    Park JW; Park CW; Lee SH; Hwang J
    PLoS One; 2015; 10(5):e0125251. PubMed ID: 25950929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler.
    Lee CH; Seok H; Jang W; Kim JT; Park G; Kim HU; Rho J; Kim T; Chung TD
    Biosens Bioelectron; 2021 Nov; 192():113499. PubMed ID: 34311208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols.
    Heo KJ; Ko HS; Jeong SB; Kim SB; Jung JH
    Nano Lett; 2021 Jan; 21(2):1017-1024. PubMed ID: 33444028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy for bioaerosol rapid detection based on broad-spectrum high-efficiency magnetic enrichment and separation combined with ATP bioluminescence.
    Du B; Zhang Y; Wang J; Liu Z; Mu X; Xu J; Tong Z; Liu B
    Biosens Bioelectron; 2023 Nov; 240():115627. PubMed ID: 37647683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the detection ability of an intrinsic fluorescence-based bioaerosol detection system for heat-stressed bacteria.
    Irie K; Scott A; Hasegawa N
    PDA J Pharm Sci Technol; 2014; 68(5):478-93. PubMed ID: 25336419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets.
    Bekking C; Yip L; Groulx N; Doggett N; Finn M; Mubareka S
    Influenza Other Respir Viruses; 2019 Nov; 13(6):564-573. PubMed ID: 31541519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pilot study of bioaerosol reduction using an air cleaning system during dental procedures.
    Hallier C; Williams DW; Potts AJ; Lewis MA
    Br Dent J; 2010 Oct; 209(8):E14. PubMed ID: 20953167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms.
    Usachev EV; Pankova AV; Rafailova EA; Pyankov OV; Agranovski IE
    J Environ Monit; 2012 Oct; 14(10):2739-45. PubMed ID: 22951953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates.
    Oh J; Choi J; Massoudifarid M; Park JY; Hwang J; Lim J; Byeon JH
    Biosens Bioelectron; 2023 Aug; 234():115356. PubMed ID: 37172362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaerosol Sampler Choice Should Consider Efficiency and Ability of Samplers To Cover Microbial Diversity.
    Mbareche H; Veillette M; Bilodeau GJ; Duchaine C
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols.
    Zhou X; Liu X; Zhao H; Guo G; Jiang X; Liu S; Sun X; Yang H
    Mikrochim Acta; 2024 Feb; 191(3):132. PubMed ID: 38351367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human emissions of size-resolved fluorescent bioaerosols in control situations.
    Xie Y; Wang Y; He J; Yang X; Duan X; Zhao B
    Sci Total Environ; 2024 May; 926():171661. PubMed ID: 38490427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.