These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31913027)

  • 1. Sustainable Recovery of Gaseous Mercury by Adsorption and Electrothermal Desorption Using Activated Carbon Fiber Cloth.
    Chen BC; Tsai CY; Pan SY; Chen YT; Hsi HC
    Environ Sci Technol; 2020 Feb; 54(3):1857-1866. PubMed ID: 31913027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury vapor adsorption and sustainable recovery using novel electrothermal swing system with gold-electrodeposited activated carbon fiber cloth.
    Liao HY; Pan SY; You SW; Hou CH; Wang C; Deng JG; Hsi HC
    J Hazard Mater; 2021 May; 410():124586. PubMed ID: 33248820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated carbon fiber cloth electrothermal swing adsorption system.
    Sullivan PD; Rood MJ; Grevillot G; Wander JD; Hay KJ
    Environ Sci Technol; 2004 Sep; 38(18):4865-77. PubMed ID: 15487798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption.
    Hsu CJ; Xiao YZ; Chung A; Hsi HC
    Sci Total Environ; 2023 Jan; 855():158870. PubMed ID: 36155048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capture and recovery of isobutane by electrothermal swing adsorption with post-desorption liquefaction.
    Mallouk KE; Johnsen DL; Rood MJ
    Environ Sci Technol; 2010 Sep; 44(18):7070-5. PubMed ID: 20722439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and regeneration on activated carbon fiber cloth for volatile organic compounds at indoor concentration levels.
    Yao M; Zhang Q; Hand DW; Perram D; Taylor R
    J Air Waste Manag Assoc; 2009 Jan; 59(1):31-6. PubMed ID: 19216185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of electrothermal heating during regeneration of activated carbon fiber cloth.
    Johnsen DL; Mallouk KE; Rood MJ
    Environ Sci Technol; 2011 Jan; 45(2):738-43. PubMed ID: 21158385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth.
    Hashisho Z; Rood M; Botich L
    Environ Sci Technol; 2005 Sep; 39(17):6851-9. PubMed ID: 16190249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.
    Son HK; Sivakumar S; Rood MJ; Kim BJ
    J Hazard Mater; 2016 Jan; 301():27-34. PubMed ID: 26342148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement.
    Hu MM; Emamipour H; Johnsen DL; Rood MJ; Song L; Zhang Z
    Environ Sci Technol; 2017 Jul; 51(13):7581-7589. PubMed ID: 28562025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of an electrothermal swing adsorption system with postdesorption liquefaction for organic gas capture and recovery.
    Mallouk KE; Rood MJ
    Environ Sci Technol; 2013 Jul; 47(13):7373-9. PubMed ID: 23789711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback.
    Johnsen DL; Rood MJ
    Environ Sci Technol; 2012 Oct; 46(20):11305-12. PubMed ID: 22967177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental and Economic Assessment of Electrothermal Swing Adsorption of Air Emissions from Sheet-Foam Production Compared to Conventional Abatement Techniques.
    Johnsen DL; Emamipour H; Guest JS; Rood MJ
    Environ Sci Technol; 2016 Feb; 50(3):1465-72. PubMed ID: 26727459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide.
    Liu H; You Z; Yang S; Liu C; Xie X; Xiang K; Wang X; Yan X
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6735-6744. PubMed ID: 30632039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state and dynamic desorption of organic vapor from activated carbon with electrothermal swing adsorption.
    Emamipour H; Hashisho Z; Cevallos D; Rood MJ; Thurston DL; Hay KJ; Kim BJ; Sullivan PD
    Environ Sci Technol; 2007 Jul; 41(14):5063-9. PubMed ID: 17711224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas.
    Liao Y; Chen D; Zou S; Xiong S; Xiao X; Dang H; Chen T; Yang S
    Environ Sci Technol; 2016 Oct; 50(19):10562-10569. PubMed ID: 27603113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on mercury removal and recovery based on enhanced adsorption by activated coke.
    An D; Sun X; Cheng X; Cui L; Zhang X; Zhao Y; Dong Y
    J Hazard Mater; 2020 Feb; 384():121354. PubMed ID: 31615709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation.
    Hsi HC; Tsai CY; Kuo TH; Chiang CS
    Bioresour Technol; 2011 Aug; 102(16):7470-7. PubMed ID: 21646016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas.
    Shan Y; Yang W; Li Y; Liu Y; Pan J
    Sci Total Environ; 2019 Dec; 697():134049. PubMed ID: 31476491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas.
    Liao Y; Xu H; Liu W; Ni H; Zhang X; Zhai A; Quan Z; Qu Z; Yan N
    Environ Sci Technol; 2019 Apr; 53(8):4511-4518. PubMed ID: 30855949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.