These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31913243)

  • 1. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Tibial Shock during Treadmill and Real-World Running.
    Johnson CD; Outerleys J; Jamison ST; Tenforde AS; Ruder M; Davis IS
    Med Sci Sports Exerc; 2020 Jul; 52(7):1557-1562. PubMed ID: 31985578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners.
    Tenforde AS; Hayano T; Jamison ST; Outerleys J; Davis IS
    PM R; 2020 Jul; 12(7):679-684. PubMed ID: 31671242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of running velocity on resultant tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D
    Sports Biomech; 2020 Dec; 19(6):750-760. PubMed ID: 30537920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.
    Moran MF; Rickert BJ; Greer BK
    J Sport Rehabil; 2017 May; 26(3):221-226. PubMed ID: 27632877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds.
    Van den Berghe P; Six J; Gerlo J; Leman M; De Clercq D
    J Biomech; 2019 Mar; 86():238-242. PubMed ID: 30824234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D; Hume PA
    Sports Biomech; 2018 Nov; 17(4):531-540. PubMed ID: 29171352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change-Point Detection of Peak Tibial Acceleration in Overground Running Retraining.
    Van den Berghe P; Gosseries M; Gerlo J; Lenoir M; Leman M; De Clercq D
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness of real-time haptic feedback gait retraining for reducing resultant tibial acceleration with runners.
    Sheerin KR; Reid D; Taylor D; Besier TF
    Phys Ther Sport; 2020 May; 43():173-180. PubMed ID: 32200261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can runners maintain a newly learned gait pattern outside a laboratory environment following gait retraining?
    Zhang JH; Chan ZYS; Au IPH; An WW; Cheung RTH
    Gait Posture; 2019 Mar; 69():8-12. PubMed ID: 30658313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait retraining to reduce lower extremity loading in runners.
    Crowell HP; Davis IS
    Clin Biomech (Bristol, Avon); 2011 Jan; 26(1):78-83. PubMed ID: 20888675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial Acceleration Reliability and Minimal Detectable Difference During Overground and Treadmill Running.
    Aubol KG; Hawkins JL; Milner CE
    J Appl Biomech; 2020 Dec; 36(6):457-459. PubMed ID: 32781437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.
    Giandolini M; Horvais N; Rossi J; Millet GY; Samozino P; Morin JB
    J Biomech; 2016 Jun; 49(9):1765-1771. PubMed ID: 27087676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot contact identification using a single triaxial accelerometer during running.
    Aubol KG; Milner CE
    J Biomech; 2020 May; 105():109768. PubMed ID: 32299620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing impact loading during running with the use of real-time visual feedback.
    Crowell HP; Milner CE; Hamill J; Davis IS
    J Orthop Sports Phys Ther; 2010 Apr; 40(4):206-13. PubMed ID: 20357417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer Learning Effects of Biofeedback Running Retraining in Untrained Conditions.
    Zhang JH; Chan ZY; Au IP; An WW; Shull PB; Cheung RT
    Med Sci Sports Exerc; 2019 Sep; 51(9):1904-1908. PubMed ID: 30973479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running.
    Baggaley M; Esposito M; Xu C; Unnikrishnan G; Reifman J; Edwards WB
    Gait Posture; 2020 Mar; 77():190-194. PubMed ID: 32058282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head and Tibial Acceleration as a Function of Stride Frequency and Visual Feedback during Running.
    Busa MA; Lim J; van Emmerik RE; Hamill J
    PLoS One; 2016; 11(6):e0157297. PubMed ID: 27271850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibial impact accelerations in gait of primary school children: The effect of age and speed.
    Tirosh O; Orland G; Eliakim A; Nemet D; Steinberg N
    Gait Posture; 2017 Sep; 57():265-269. PubMed ID: 28683418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.