BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31913448)

  • 1. UDSMProt: universal deep sequence models for protein classification.
    Strodthoff N; Wagner P; Wenzel M; Samek W
    Bioinformatics; 2020 Apr; 36(8):2401-2409. PubMed ID: 31913448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProteinBERT: a universal deep-learning model of protein sequence and function.
    Brandes N; Ofer D; Peleg Y; Rappoport N; Linial M
    Bioinformatics; 2022 Apr; 38(8):2102-2110. PubMed ID: 35020807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-aware protein self-supervised learning.
    Chen CS; Zhou J; Wang F; Liu X; Dou D
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37052532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tokenization on transformers for biological sequences.
    Dotan E; Jaschek G; Pupko T; Belinkov Y
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38608190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProFET: Feature engineering captures high-level protein functions.
    Ofer D; Linial M
    Bioinformatics; 2015 Nov; 31(21):3429-36. PubMed ID: 26130574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TripletProt: Deep Representation Learning of Proteins Based On Siamese Networks.
    Nourani E; Asgari E; McHardy AC; Mofrad MRK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3744-3753. PubMed ID: 34460382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChaperISM: improved chaperone binding prediction using position-independent scoring matrices.
    Gutierres MBB; Bonorino CBC; Rigo MM
    Bioinformatics; 2020 Feb; 36(3):735-741. PubMed ID: 31504177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformer Neural Networks for Protein Family and Interaction Prediction Tasks.
    Nambiar A; Liu S; Heflin M; Forsyth JM; Maslov S; Hopkins M; Ritz A
    J Comput Biol; 2023 Jan; 30(1):95-111. PubMed ID: 35950958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of learning to rank to protein remote homology detection.
    Liu B; Chen J; Wang X
    Bioinformatics; 2015 Nov; 31(21):3492-8. PubMed ID: 26163693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant speedup of database searches with HMMs by search space reduction with PSSM family models.
    Beckstette M; Homann R; Giegerich R; Kurtz S
    Bioinformatics; 2009 Dec; 25(24):3251-8. PubMed ID: 19828575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LBERT: Lexically aware Transformer-based Bidirectional Encoder Representation model for learning universal bio-entity relations.
    Warikoo N; Chang YC; Hsu WL
    Bioinformatics; 2021 Apr; 37(3):404-412. PubMed ID: 32810217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics.
    Asgari E; Mofrad MR
    PLoS One; 2015; 10(11):e0141287. PubMed ID: 26555596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins.
    Özsarı G; Rifaioglu AS; Atakan A; Doğan T; Martin MJ; Çetin Atalay R; Atalay V
    Bioinformatics; 2022 Sep; 38(17):4226-4229. PubMed ID: 35801913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying GPCR-drug interaction based on wordbook learning from sequences.
    Wang P; Huang X; Qiu W; Xiao X
    BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework.
    Moffat L; Jones DT
    Bioinformatics; 2021 Nov; 37(21):3744-3751. PubMed ID: 34213528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.