These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31913528)

  • 21. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.
    McNew LB; Hunt LM; Gregory AJ; Wisely SM; Sandercock BK
    Conserv Biol; 2014 Aug; 28(4):1089-99. PubMed ID: 24628394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines.
    Arnett EB; Hein CD; Schirmacher MR; Huso MM; Szewczak JM
    PLoS One; 2013; 8(6):e65794. PubMed ID: 23840369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renewable energy development threatens many globally important biodiversity areas.
    Rehbein JA; Watson JEM; Lane JL; Sonter LJ; Venter O; Atkinson SC; Allan JR
    Glob Chang Biol; 2020 May; 26(5):3040-3051. PubMed ID: 32133726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada.
    Parisé J; Walker TR
    J Environ Manage; 2017 Oct; 201():252-259. PubMed ID: 28672197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geographic origins and population genetics of bats killed at wind-energy facilities.
    Pylant CL; Nelson DM; Fitzpatrick MC; Gates JE; Keller SR
    Ecol Appl; 2016 Jul; 26(5):1381-1395. PubMed ID: 27755755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.
    Thaxter CB; Buchanan GM; Carr J; Butchart SHM; Newbold T; Green RE; Tobias JA; Foden WB; O'Brien S; Pearce-Higgins JW
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats.
    Richardson SM; Lintott PR; Hosken DJ; Economou T; Mathews F
    Sci Rep; 2021 Feb; 11(1):3636. PubMed ID: 33574369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consolidating the State of Knowledge: A Synoptical Review of Wind Energy's Wildlife Effects.
    Schuster E; Bulling L; Köppel J
    Environ Manage; 2015 Aug; 56(2):300-31. PubMed ID: 25910869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.
    Beston JA; Diffendorfer JE; Loss SR; Johnson DH
    PLoS One; 2016; 11(3):e0150813. PubMed ID: 26963254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.
    Hayes MA; Cryan PM; Wunder MB
    PLoS One; 2015; 10(7):e0132599. PubMed ID: 26208098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecological impact assessments fail to reduce risk of bat casualties at wind farms.
    Lintott PR; Richardson SM; Hosken DJ; Fensome SA; Mathews F
    Curr Biol; 2016 Nov; 26(21):R1135-R1136. PubMed ID: 27825446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of solar and wind development on conservation values in the Mojave Desert.
    Parker SS; Cohen BS; Moore J
    PLoS One; 2018; 13(12):e0207678. PubMed ID: 30540781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats.
    Kim JY; Koide D; Ishihama F; Kadoya T; Nishihiro J
    Sci Total Environ; 2021 Jul; 779():146475. PubMed ID: 33752006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Game bird carcasses are less persistent than raptor carcasses, but can predict raptor persistence dynamics.
    Hallingstad E; Riser-Espinoza D; Brown S; Rabie P; Haddock J; Kosciuch K
    PLoS One; 2023; 18(1):e0279997. PubMed ID: 36595543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities.
    Hayes MA; Hooton LA; Gilland KL; Grandgent C; Smith RL; Lindsay SR; Collins JD; Schumacher SM; Rabie PA; Gruver JC; Goodrich-Mahoney J
    Ecol Appl; 2019 Jun; 29(4):e01881. PubMed ID: 30939226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury contamination in bats from the central United States.
    Korstian JM; Chumchal MM; Bennett VJ; Hale AM
    Environ Toxicol Chem; 2018 Jan; 37(1):160-165. PubMed ID: 28792083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
    Robinson Willmott J; Forcey GM; Hooton LA
    Ambio; 2015 Nov; 44 Suppl 4(Suppl 4):557-71. PubMed ID: 26508344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-fledging movements of white-tailed eagles: Conservation implications for wind-energy development.
    Balotari-Chiebao F; Villers A; Ijäs A; Ovaskainen O; Repka S; Laaksonen T
    Ambio; 2016 Nov; 45(7):831-840. PubMed ID: 27115397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do renewable portfolio standards increase renewable energy capacity? Evidence from the United States.
    Joshi J
    J Environ Manage; 2021 Jun; 287():112261. PubMed ID: 33721760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renewable energy.
    Destouni G; Frank H
    Ambio; 2010; 39 Suppl 1(Suppl 1):18-21. PubMed ID: 20873681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.