These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31913615)

  • 1. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides.
    Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW
    J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides.
    Jia X; Zhang SJ; Zhou L; Szostak JW
    Nucleic Acids Res; 2024 Jun; 52(10):5451-5464. PubMed ID: 38726871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated ribonucleotides undergo a sugar pucker switch upon binding to a single-stranded RNA template.
    Zhang N; Zhang S; Szostak JW
    J Am Chem Soc; 2012 Feb; 134(8):3691-4. PubMed ID: 22296305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of N3'-P5'-linked phosphoramidate DNA by nonenzymatic template-directed primer extension.
    Zhang S; Zhang N; Blain JC; Szostak JW
    J Am Chem Soc; 2013 Jan; 135(2):924-32. PubMed ID: 23252395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interpretation of the effects of threo-nucleotides on nonenzymatic template-directed polymerization.
    Zhang W; Kim SC; Tam CP; Lelyveld VS; Bala S; Chaput JC; Szostak JW
    Nucleic Acids Res; 2021 Jan; 49(2):646-656. PubMed ID: 33347562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of RNA with DNA in template-directed synthesis.
    Zielinski M; Kozlov IA; Orgel LE
    Helv Chim Acta; 2000; 83(8):1678-84. PubMed ID: 11543568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides.
    Ding D; Zhang SJ; Szostak JW
    Nucleic Acids Res; 2023 Jul; 51(13):6528-6539. PubMed ID: 37247941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides.
    Prywes N; Blain JC; Del Frate F; Szostak JW
    Elife; 2016 Jun; 5():. PubMed ID: 27351102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prebiotically Plausible "Patching" of RNA Backbone Cleavage through a 3'-5' Pyrophosphate Linkage.
    Wright TH; Giurgiu C; Zhang W; Radakovic A; O'Flaherty DK; Zhou L; Szostak JW
    J Am Chem Soc; 2019 Nov; 141(45):18104-18112. PubMed ID: 31651170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying.
    Zhang SJ; Duzdevich D; Ding D; Szostak JW
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2116429119. PubMed ID: 35446612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA.
    Chen B; Jamieson ER; Tullius TD
    Bioorg Med Chem Lett; 2002 Nov; 12(21):3093-6. PubMed ID: 12372509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA.
    Deck C; Jauker M; Richert C
    Nat Chem; 2011 Jul; 3(8):603-8. PubMed ID: 21778979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-enzymatic primer extension with strand displacement.
    Zhou L; Kim SC; Ho KH; O'Flaherty DK; Giurgiu C; Wright TH; Szostak JW
    Elife; 2019 Nov; 8():. PubMed ID: 31702557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymatic RNA replication in a mixture of 'spent' nucleotides.
    Patki GM; Rajamani S
    FEBS Lett; 2023 Dec; 597(24):3125-3134. PubMed ID: 38058189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding over the blocks in enzyme-free RNA copying--one-pot primer extension in ice.
    Löffler PM; Groen J; Dörr M; Monnard PA
    PLoS One; 2013; 8(9):e75617. PubMed ID: 24058695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic observation of nonenzymatic RNA primer extension.
    Zhang W; Walton T; Li L; Szostak JW
    Elife; 2018 May; 7():. PubMed ID: 29851379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic ribonucleotide reduction in the prebiotic context.
    Dragičević I; Barić D; Kovačević B; Golding BT; Smith DM
    Chemistry; 2015 Apr; 21(16):6132-43. PubMed ID: 25754795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates.
    Ding D; Zhou L; Giurgiu C; Szostak JW
    Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diaminopurine in Nonenzymatic RNA Template Copying.
    Jia X; Fang Z; Kim SC; Ding D; Zhou L; Szostak JW
    J Am Chem Soc; 2024 Jun; 146(23):15897-15907. PubMed ID: 38818863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.