BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31913615)

  • 1. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides.
    Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW
    J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.
    Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW
    J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides.
    Jia X; Zhang SJ; Zhou L; Szostak JW
    Nucleic Acids Res; 2024 Jun; 52(10):5451-5464. PubMed ID: 38726871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated ribonucleotides undergo a sugar pucker switch upon binding to a single-stranded RNA template.
    Zhang N; Zhang S; Szostak JW
    J Am Chem Soc; 2012 Feb; 134(8):3691-4. PubMed ID: 22296305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of N3'-P5'-linked phosphoramidate DNA by nonenzymatic template-directed primer extension.
    Zhang S; Zhang N; Blain JC; Szostak JW
    J Am Chem Soc; 2013 Jan; 135(2):924-32. PubMed ID: 23252395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interpretation of the effects of threo-nucleotides on nonenzymatic template-directed polymerization.
    Zhang W; Kim SC; Tam CP; Lelyveld VS; Bala S; Chaput JC; Szostak JW
    Nucleic Acids Res; 2021 Jan; 49(2):646-656. PubMed ID: 33347562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of RNA with DNA in template-directed synthesis.
    Zielinski M; Kozlov IA; Orgel LE
    Helv Chim Acta; 2000; 83(8):1678-84. PubMed ID: 11543568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides.
    Ding D; Zhang SJ; Szostak JW
    Nucleic Acids Res; 2023 Jul; 51(13):6528-6539. PubMed ID: 37247941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides.
    Prywes N; Blain JC; Del Frate F; Szostak JW
    Elife; 2016 Jun; 5():. PubMed ID: 27351102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prebiotically Plausible "Patching" of RNA Backbone Cleavage through a 3'-5' Pyrophosphate Linkage.
    Wright TH; Giurgiu C; Zhang W; Radakovic A; O'Flaherty DK; Zhou L; Szostak JW
    J Am Chem Soc; 2019 Nov; 141(45):18104-18112. PubMed ID: 31651170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying.
    Zhang SJ; Duzdevich D; Ding D; Szostak JW
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2116429119. PubMed ID: 35446612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA.
    Chen B; Jamieson ER; Tullius TD
    Bioorg Med Chem Lett; 2002 Nov; 12(21):3093-6. PubMed ID: 12372509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA.
    Deck C; Jauker M; Richert C
    Nat Chem; 2011 Jul; 3(8):603-8. PubMed ID: 21778979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-enzymatic primer extension with strand displacement.
    Zhou L; Kim SC; Ho KH; O'Flaherty DK; Giurgiu C; Wright TH; Szostak JW
    Elife; 2019 Nov; 8():. PubMed ID: 31702557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymatic RNA replication in a mixture of 'spent' nucleotides.
    Patki GM; Rajamani S
    FEBS Lett; 2023 Dec; 597(24):3125-3134. PubMed ID: 38058189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sliding over the blocks in enzyme-free RNA copying--one-pot primer extension in ice.
    Löffler PM; Groen J; Dörr M; Monnard PA
    PLoS One; 2013; 8(9):e75617. PubMed ID: 24058695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic observation of nonenzymatic RNA primer extension.
    Zhang W; Walton T; Li L; Szostak JW
    Elife; 2018 May; 7():. PubMed ID: 29851379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic ribonucleotide reduction in the prebiotic context.
    Dragičević I; Barić D; Kovačević B; Golding BT; Smith DM
    Chemistry; 2015 Apr; 21(16):6132-43. PubMed ID: 25754795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates.
    Ding D; Zhou L; Giurgiu C; Szostak JW
    Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diaminopurine in Nonenzymatic RNA Template Copying.
    Jia X; Fang Z; Kim SC; Ding D; Zhou L; Szostak JW
    J Am Chem Soc; 2024 Jun; 146(23):15897-15907. PubMed ID: 38818863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.