BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 31913749)

  • 41. Metabotropic glutamate receptor type 1 in taste tissue.
    San Gabriel A; Maekawa T; Uneyama H; Torii K
    Am J Clin Nutr; 2009 Sep; 90(3):743S-746S. PubMed ID: 19571209
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal.
    Treesukosol Y; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2012 Jul; 303(2):R218-35. PubMed ID: 22621968
    [TBL] [Abstract][Full Text] [Related]  

  • 43. T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to Polycose: implications for saccharide taste receptors in mice.
    Treesukosol Y; Blonde GD; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R855-65. PubMed ID: 19158407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Behavioral studies of umami: tales told by mice and rats.
    Delay ER; Eddy MC; Eschle BK
    Ann N Y Acad Sci; 2009 Jul; 1170():41-5. PubMed ID: 19686105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor).
    Toda Y; Nakagita T; Hayakawa T; Okada S; Narukawa M; Imai H; Ishimaru Y; Misaka T
    J Biol Chem; 2013 Dec; 288(52):36863-77. PubMed ID: 24214976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity.
    Ohkuri T; Yasumatsu K; Horio N; Jyotaki M; Margolskee RF; Ninomiya Y
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R960-71. PubMed ID: 19211717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct binding of calmodulin to the cytosolic C-terminal regions of sweet/umami taste receptors.
    Yoshida A; Ito A; Yasui N; Yamashita A
    J Biochem; 2023 Oct; 174(5):451-459. PubMed ID: 37527916
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue.
    Yasumatsu K; Ohkuri T; Yoshida R; Iwata S; Margolskee RF; Ninomiya Y
    Acta Physiol (Oxf); 2020 Dec; 230(4):e13529. PubMed ID: 32599649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An amino-acid taste receptor.
    Nelson G; Chandrashekar J; Hoon MA; Feng L; Zhao G; Ryba NJ; Zuker CS
    Nature; 2002 Mar; 416(6877):199-202. PubMed ID: 11894099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical range recognized by the ligand-binding domain in a representative amino acid-sensing taste receptor, T1r2a/T1r3, from medaka fish.
    Ishida H; Yasui N; Yamashita A
    PLoS One; 2024; 19(3):e0300981. PubMed ID: 38517842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chloride ions evoke taste sensations by binding to the extracellular ligand-binding domain of sweet/umami taste receptors.
    Atsumi N; Yasumatsu K; Takashina Y; Ito C; Yasui N; Margolskee RF; Yamashita A
    Elife; 2023 Feb; 12():. PubMed ID: 36852482
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Receptors and transduction of umami taste stimuli.
    Kinnamon SC; Vandenbeuch A
    Ann N Y Acad Sci; 2009 Jul; 1170():55-9. PubMed ID: 19686108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. L-Theanine elicits umami taste via the T1R1 + T1R3 umami taste receptor.
    Narukawa M; Toda Y; Nakagita T; Hayashi Y; Misaka T
    Amino Acids; 2014 Jun; 46(6):1583-7. PubMed ID: 24633359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.
    Brasser SM; Norman MB; Lemon CH
    Physiol Genomics; 2010 May; 41(3):232-43. PubMed ID: 20145204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells.
    Ohmoto M; Matsumoto I; Yasuoka A; Yoshihara Y; Abe K
    Mol Cell Neurosci; 2008 Aug; 38(4):505-17. PubMed ID: 18539481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Umami responses in mouse taste cells indicate more than one receptor.
    Maruyama Y; Pereira E; Margolskee RF; Chaudhari N; Roper SD
    J Neurosci; 2006 Feb; 26(8):2227-34. PubMed ID: 16495449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+3 heterodimer in a mouse model.
    Treesukosol Y; Smith KR; Spector AC
    J Neurosci; 2011 Sep; 31(38):13527-34. PubMed ID: 21940444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Umami taste responses are mediated by alpha-transducin and alpha-gustducin.
    He W; Yasumatsu K; Varadarajan V; Yamada A; Lem J; Ninomiya Y; Margolskee RF; Damak S
    J Neurosci; 2004 Sep; 24(35):7674-80. PubMed ID: 15342734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Application of In Silico Methods on Umami Taste Receptor.
    Spaggiari G; Cavaliere F; Cozzini P
    Handb Exp Pharmacol; 2022; 275():137-154. PubMed ID: 34247277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.
    Smith KR; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2017 Oct; 313(4):R450-R462. PubMed ID: 28768658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.