These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31914424)

  • 1. Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations.
    Baines R; Freeman S; Fish F; Kramer-Bottiglio R
    Bioinspir Biomim; 2020 Feb; 15(2):025002. PubMed ID: 31914424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.
    Young VK; Vest KG; Rivera AR; Espinoza NR; Blob RW
    Biol Lett; 2017 Jan; 13(1):. PubMed ID: 28123109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative limb bone scaling in turtles: Phylogenetic transitions with changes in functional demands?
    Young VKH; Baeza JA; Blob RW
    J Morphol; 2019 Apr; 280(4):593-603. PubMed ID: 30811074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb bone loading in swimming turtles: changes in loading facilitate transitions from tubular to flipper-shaped limbs during aquatic invasions.
    Young VK; Blob RW
    Biol Lett; 2015 Jun; 11(6):20150110. PubMed ID: 26085496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles.
    Mazouchova N; Gravish N; Savu A; Goldman DI
    Biol Lett; 2010 Jun; 6(3):398-401. PubMed ID: 20147312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turtle mimetic soft robot with two swimming gaits.
    Song SH; Kim MS; Rodrigue H; Lee JY; Shim JE; Kim MC; Chu WS; Ahn SH
    Bioinspir Biomim; 2016 May; 11(3):036010. PubMed ID: 27145061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humeral loads during swimming and walking in turtles: implications for morphological change during aquatic reinvasions.
    Young VKH; Wienands CE; Wilburn BP; Blob RW
    J Exp Biol; 2017 Nov; 220(Pt 21):3873-3877. PubMed ID: 28883088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically inspired swimming robotic frog based on pneumatic soft actuators.
    Jizhuang F; Qilong D; Qingguo Y; Yi W; Jiaming Q; Yanhe Z
    Bioinspir Biomim; 2020 May; 15(4):046006. PubMed ID: 32209752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis.
    Li Y; Fish F; Chen Y; Ren T; Zhou J
    Bioinspir Biomim; 2019 Sep; 14(6):066008. PubMed ID: 31430730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forelimb kinematics and motor patterns of the slider turtle (Trachemys scripta) during swimming and walking: shared and novel strategies for meeting locomotor demands of water and land.
    Rivera AR; Blob RW
    J Exp Biol; 2010 Oct; 213(Pt 20):3515-26. PubMed ID: 20889832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.
    Kazakidi A; Vavourakis V; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1321-39. PubMed ID: 24730546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetry of righting reflexes in sea turtles and its behavioral correlates.
    Malashichev Y
    Physiol Behav; 2016 Apr; 157():1-8. PubMed ID: 26772421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pelvic girdle mobility of cryptodire and pleurodire turtles during walking and swimming.
    Mayerl CJ; Brainerd EL; Blob RW
    J Exp Biol; 2016 Sep; 219(Pt 17):2650-8. PubMed ID: 27340204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flipper-driven terrestrial locomotion of a sea turtle-inspired robot.
    Mazouchova N; Umbanhowar PB; Goldman DI
    Bioinspir Biomim; 2013 Jun; 8(2):026007. PubMed ID: 23612858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.
    Calisti M; Corucci F; Arienti A; Laschi C
    Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Octopus-inspired multi-arm robotic swimming.
    Sfakiotakis M; Kazakidi A; Tsakiris DP
    Bioinspir Biomim; 2015 May; 10(3):035005. PubMed ID: 25970151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.
    Fang T; Zhou Y; Li S; Xu M; Liang H; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056005. PubMed ID: 27530372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic stability of the painted turtle (Chrysemys picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods.
    Rivera G; Rivera AR; Blob RW
    J Exp Biol; 2011 Apr; 214(Pt 7):1153-62. PubMed ID: 21389201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.