These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31914431)

  • 21. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.
    Yao Y; Liu A; Bai J; Zhang X; Wang R
    Nanoscale Res Lett; 2016 Dec; 11(1):371. PubMed ID: 27550051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
    Wu M; Shi JJ; Zhang M; Ding YM; Wang H; Cen YL; Guo WH; Pan SH; Zhu YH
    Nanotechnology; 2018 May; 29(20):205708. PubMed ID: 29504514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DFT based investigations for the structural and electronic properties of coved zigzag BP nanoribbons.
    Nemu A; Jaiswal NK
    J Mol Graph Model; 2023 Jun; 121():108453. PubMed ID: 36940487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding
    Izadi Vishkayi S; Bagheri Tagani M
    Nanomicro Lett; 2018; 10(1):14. PubMed ID: 30393663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions.
    Wang N; Cao D; Wang J; Liang P; Chen X; Shu H
    Nanoscale; 2018 Jul; 10(25):12133-12140. PubMed ID: 29915839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Electronic Structure of Armchair MoS
    Zhang L; Wan L; Yu Y; Wang B; Xu F; Wei Y; Zhao Y
    J Phys Chem C Nanomater Interfaces; 2015; 119(38):22164-22171. PubMed ID: 26331336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C
    Ding Y; Wang Y
    ACS Omega; 2018 Aug; 3(8):8777-8786. PubMed ID: 31459010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Spin Thermopower in Phosphorene Nanoribbons via Edge-State Modifications.
    Ou J; Zhang Q
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping.
    Navarro-Santos P; Ricardo-Chávez JL; Reyes-Reyes M; Rivera JL; López-Sandoval R
    J Phys Condens Matter; 2010 Dec; 22(50):505302. PubMed ID: 21406793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The quantum confinement effects on the electronic properties of monolayer GeS nanoribbon with tube-edged reconstruction.
    Kong W; Zhang Y; Jiang X; Su Y; Liu H; Gao J
    Nanotechnology; 2022 May; ():. PubMed ID: 35584618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic structure and stability of semiconducting graphene nanoribbons.
    Barone V; Hod O; Scuseria GE
    Nano Lett; 2006 Dec; 6(12):2748-54. PubMed ID: 17163699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetics and Electronic Structure of h-BN Nanoflakes.
    Yamanaka A; Okada S
    Sci Rep; 2016 Aug; 6():30653. PubMed ID: 27481626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.