These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31914766)

  • 21. Controlling the Mechanism of Excitonic Splitting in In
    Yin P; Hegde M; Tan Y; Chen S; Garnet N; Radovanovic PV
    ACS Nano; 2018 Nov; 12(11):11211-11218. PubMed ID: 30335948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
    Greenberg BL; Ganguly S; Held JT; Kramer NJ; Mkhoyan KA; Aydil ES; Kortshagen UR
    Nano Lett; 2015 Dec; 15(12):8162-9. PubMed ID: 26551232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized Surface Plasmon Coupling between Mid-IR-Resonant ITO Nanocrystals.
    Xi M; Reinhard BM
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(10):5698-5704. PubMed ID: 30344836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong Purcell enhancement at telecom wavelengths afforded by spinel Fe
    Dolgopolova EA; Li D; Hartman ST; Watt J; Ríos C; Hu J; Kukkadapu R; Casson J; Bose R; Malko AV; Blake AV; Ivanov S; Roslyak O; Piryatinski A; Htoon H; Chen HT; Pilania G; Hollingsworth JA
    Nanoscale Horiz; 2022 Feb; 7(3):267-275. PubMed ID: 34908075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal.
    Song H; Lee JH; Eom SY; Choi D; Jeong KS
    ACS Nano; 2023 Sep; 17(17):16895-16903. PubMed ID: 37579184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach.
    Yibi Y; Chen J; Xue J; Song J; Zeng H
    Sci Bull (Beijing); 2017 May; 62(10):693-699. PubMed ID: 36659440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite.
    Kriegel I; Scotognella F
    Beilstein J Nanotechnol; 2015; 6():193-200. PubMed ID: 25671163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shape Controlled Plasmonic Sn Doped CdO Colloidal Nanocrystals: A Synthetic Route to Maximize the Figure of Merit of Transparent Conducting Oxide.
    Ghosh S; Saha M; Paul S; De SK
    Small; 2017 Feb; 13(7):. PubMed ID: 27935253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.
    Wei W; Hong R; Jing M; Shao W; Tao C; Zhang D
    Nanotechnology; 2018 Jan; 29(1):015705. PubMed ID: 29139394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoantenna structures for the detection of phonons in nanocrystals.
    Milekhin AG; Kuznetsov SA; Milekhin IA; Sveshnikova LL; Duda TA; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT
    Beilstein J Nanotechnol; 2018; 9():2646-2656. PubMed ID: 30416915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size Control of the Mechanism of Exciton Polarization in Metal Oxide Nanocrystals through Fermi Level Pinning.
    Tandon B; Radovanovic PV
    ACS Nano; 2023 Jul; 17(14):14069-14078. PubMed ID: 37436105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anticandidal and In vitro Anti-Proliferative Activity of Sonochemically synthesized Indium Tin Oxide Nanoparticles.
    Rehman S; Asiri SM; Khan FA; Jermy BR; Ravinayagam V; Alsalem Z; Jindan RA; Qurashi A
    Sci Rep; 2020 Feb; 10(1):3228. PubMed ID: 32094420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry.
    Liu Z; Zhong Y; Shafei I; Jeong S; Wang L; Nguyen HT; Sun CJ; Li T; Chen J; Chen L; Losovyj Y; Gao X; Ma W; Ye X
    Nano Lett; 2020 Apr; 20(4):2821-2828. PubMed ID: 32105491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas.
    Elibol K; Downing C; Hobbs RG
    Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies.
    Hsu SW; Ngo C; Tao AR
    Nano Lett; 2014 May; 14(5):2372-80. PubMed ID: 24738726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.