BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31914821)

  • 1. Development of nano-carriers for
    Askarizadeh A; Badiee A; Khamesipour A
    Expert Opin Drug Deliv; 2020 Feb; 17(2):167-187. PubMed ID: 31914821
    [No Abstract]   [Full Text] [Related]  

  • 2. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends.
    Badiee A; Heravi Shargh V; Khamesipour A; Jaafari MR
    Vaccine; 2013 Jan; 31(5):735-49. PubMed ID: 23219436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.
    Doroud D; Rafati S
    Expert Rev Vaccines; 2012 Jan; 11(1):69-86. PubMed ID: 22149710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis.
    Duthie MS; Reed SG
    Clin Vaccine Immunol; 2017 Jul; 24(7):. PubMed ID: 28515135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins.
    Tafaghodi M; Eskandari M; Kharazizadeh M; Khamesipour A; Jaafari MR
    Trop Biomed; 2010 Dec; 27(3):639-50. PubMed ID: 21399606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in leishmaniasis vaccine delivery systems.
    Bhowmick S; Ali N
    Expert Opin Drug Deliv; 2008 Jul; 5(7):789-803. PubMed ID: 18590463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA).
    Firouzmand H; Badiee A; Khamesipour A; Heravi Shargh V; Alavizadeh SH; Abbasi A; Jaafari MR
    Acta Trop; 2013 Dec; 128(3):528-35. PubMed ID: 23916506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaccine candidates against leishmania under current research.
    Iborra S; Solana JC; Requena JM; Soto M
    Expert Rev Vaccines; 2018 Apr; 17(4):323-334. PubMed ID: 29589966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic vaccines for leishmaniasis.
    Khamesipour A
    Expert Opin Biol Ther; 2014 Nov; 14(11):1641-9. PubMed ID: 25077737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery systems for Leishmania vaccine development.
    Gholami E; Zahedifard F; Rafati S
    Expert Rev Vaccines; 2016 Jul; 15(7):879-95. PubMed ID: 26905526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review.
    Kelleci K; Allahverdiyev A; Bağirova M; Ihlamur M; Abamor EŞ
    J Vector Borne Dis; 2023; 60(2):125-141. PubMed ID: 37417162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis.
    Shargh VH; Jaafari MR; Khamesipour A; Jaafari I; Jalali SA; Abbasi A; Badiee A
    Vaccine; 2012 Jun; 30(26):3957-64. PubMed ID: 22465747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization.
    Lanza JS; Vucen S; Flynn O; Donadei A; Cojean S; Loiseau PM; Fernandes APSM; Frézard F; Moore AC
    Int J Pharm; 2020 Aug; 586():119390. PubMed ID: 32540349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications.
    Ratnapriya S; Keerti ; Sahasrabuddhe AA; Dube A
    Vaccine; 2019 Jun; 37(27):3505-3519. PubMed ID: 31103364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines.
    Jin Z; Gao S; Cui X; Sun D; Zhao K
    Int J Pharm; 2019 Dec; 572():118731. PubMed ID: 31669213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble
    Margaroni M; Agallou M; Athanasiou E; Kammona O; Kiparissides C; Gaitanaki C; Karagouni E
    Int J Nanomedicine; 2017; 12():6169-6184. PubMed ID: 28883727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-depth review of delivery carriers associated with vaccine adjuvants: current status and future perspectives.
    Zeng Y; Zou F; Xia N; Li S
    Expert Rev Vaccines; 2023; 22(1):681-695. PubMed ID: 37496496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview on the role of silica-based materials in vaccine development.
    Navarro-Tovar G; Palestino G; Rosales-Mendoza S
    Expert Rev Vaccines; 2016 Nov; 15(11):1449-1462. PubMed ID: 27160927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-protective efficacy from a immunogen firstly identified in Leishmania infantum against tegumentary leishmaniasis.
    Martins VT; Lage DP; Duarte MC; Costa LE; Chávez-Fumagalli MA; Roatt BM; Menezes-Souza D; Tavares CA; Coelho EA
    Parasite Immunol; 2016 Feb; 38(2):108-17. PubMed ID: 26756314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.
    Bolhassani A; Javanzad S; Saleh T; Hashemi M; Aghasadeghi MR; Sadat SM
    Hum Vaccin Immunother; 2014; 10(2):321-32. PubMed ID: 24128651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.