These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31914861)
1. Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. Prakash A; Kumar V; Banerjee A; Lynn AM; Prasad R J Biomol Struct Dyn; 2021 Jan; 39(1):357-367. PubMed ID: 31914861 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008 [TBL] [Abstract][Full Text] [Related]
3. Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state. Mackness BC; Tran MT; McClain SP; Matthews CR; Zitzewitz JA J Biol Chem; 2014 Mar; 289(12):8264-76. PubMed ID: 24497641 [TBL] [Abstract][Full Text] [Related]
4. Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis. Tavella D; Zitzewitz JA; Massi F Biophys J; 2018 Nov; 115(9):1673-1680. PubMed ID: 30309612 [TBL] [Abstract][Full Text] [Related]
5. A Hydrophobic Core Stabilizes the Residual Structure in the RRM2 Intermediate State of the ALS-linked Protein TDP-43. Mackness BC; Morgan BR; Deveau LM; Kathuria SV; Zitzewitz JA; Massi F J Mol Biol; 2024 Nov; 436(22):168823. PubMed ID: 39426615 [TBL] [Abstract][Full Text] [Related]
6. A hydrophobic core stabilizes the residual structure in the RRM2 intermediate state of the ALS-linked protein TDP-43. Mackness BC; Morgan BR; Deveau LM; Kathuria SV; Zitzewitz JA; Massi F bioRxiv; 2024 Jun; ():. PubMed ID: 38915526 [TBL] [Abstract][Full Text] [Related]
7. Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43. Shodai A; Ido A; Fujiwara N; Ayaki T; Morimura T; Oono M; Uchida T; Takahashi R; Ito H; Urushitani M PLoS One; 2012; 7(12):e52776. PubMed ID: 23300771 [TBL] [Abstract][Full Text] [Related]
8. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43. Morgan BR; Zitzewitz JA; Massi F Biophys J; 2017 Aug; 113(3):540-549. PubMed ID: 28793209 [TBL] [Abstract][Full Text] [Related]
9. Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). Shodai A; Morimura T; Ido A; Uchida T; Ayaki T; Takahashi R; Kitazawa S; Suzuki S; Shirouzu M; Kigawa T; Muto Y; Yokoyama S; Takahashi R; Kitahara R; Ito H; Fujiwara N; Urushitani M J Biol Chem; 2013 May; 288(21):14886-905. PubMed ID: 23558684 [TBL] [Abstract][Full Text] [Related]
10. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer. Pillai M; Jha SK Biochemistry; 2019 Feb; 58(6):608-620. PubMed ID: 30520297 [TBL] [Abstract][Full Text] [Related]
11. Exploring the aggregation-prone regions from structural domains of human TDP-43. Kumar V; Wahiduzzaman ; Prakash A; Tomar AK; Srivastava A; Kundu B; Lynn AM; Imtaiyaz Hassan M Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):286-296. PubMed ID: 30315897 [TBL] [Abstract][Full Text] [Related]
12. Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1. Dang M; Li Y; Song J Sci Rep; 2021 Jan; 11(1):1034. PubMed ID: 33441818 [TBL] [Abstract][Full Text] [Related]
13. The N-Terminal Domain of ALS-Linked TDP-43 Assembles without Misfolding. Tsoi PS; Choi KJ; Leonard PG; Sizovs A; Moosa MM; MacKenzie KR; Ferreon JC; Ferreon ACM Angew Chem Int Ed Engl; 2017 Oct; 56(41):12590-12593. PubMed ID: 28833982 [TBL] [Abstract][Full Text] [Related]
14. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity. Wei Y; Lim L; Wang L; Song J Biochem Biophys Res Commun; 2017 Apr; 485(4):826-831. PubMed ID: 28257838 [TBL] [Abstract][Full Text] [Related]
15. A Computational Approach to Investigate TDP-43 RNA-Recognition Motif 2 C-Terminal Fragments Aggregation in Amyotrophic Lateral Sclerosis. Grassmann G; Miotto M; Di Rienzo L; Salaris F; Silvestri B; Zacco E; Rosa A; Tartaglia GG; Ruocco G; Milanetti E Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944548 [TBL] [Abstract][Full Text] [Related]
16. Mutation in the RRM2 domain of TDP-43 in Amyotrophic Lateral Sclerosis with rapid progression associated with ubiquitin positive aggregates in cultured motor neurons. Maurel C; Madji-Hounoum B; Thepault RA; Marouillat S; Brulard C; Danel-Brunaud V; Camdessanche JP; Blasco H; Corcia P; Andres CR; Vourc'h P Amyotroph Lateral Scler Frontotemporal Degener; 2018 Feb; 19(1-2):149-151. PubMed ID: 28705014 [TBL] [Abstract][Full Text] [Related]
17. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds. Chamachi NG; Chakrabarty S Biochemistry; 2017 Feb; 56(6):833-844. PubMed ID: 28102071 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic modulation of folding and aggregation energy landscape by DNA binding of functional domains of TDP-43. Patni D; Jha SK Biochim Biophys Acta Proteins Proteom; 2023 Jul; 1871(4):140916. PubMed ID: 37061152 [TBL] [Abstract][Full Text] [Related]
19. Characterization of heterogeneous intermediate ensembles on the guanidinium chloride-induced unfolding pathway of β-lactoglobulin. Pandey P; Meena NK; Prakash A; Kumar V; Lynn AM; Ahmad F J Biomol Struct Dyn; 2020 Mar; 38(4):1042-1053. PubMed ID: 30880641 [TBL] [Abstract][Full Text] [Related]
20. Dissecting the effect of ALS mutation S375G on the conformational properties and aggregation dynamics of TDP-43 Xu Z; Zhang J; Tang J; Gong Y; Zou Y; Zhang Q Biophys Chem; 2024 Jul; 310():107230. PubMed ID: 38615537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]