BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31914958)

  • 1. Characteristics of diffuse retinal nerve fiber layer defects in red-free photographs as observed in optical coherence tomography en face images.
    Lim AB; Park JH; Jung JH; Yoo C; Kim YY
    BMC Ophthalmol; 2020 Jan; 20(1):16. PubMed ID: 31914958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized Retinal Nerve Fiber Layer Defect Location Among Red-free Fundus Photographs, En Face Structural Images, and Cirrus HD-OCT Maps.
    Park JH; Yoo C; Kim YY
    J Glaucoma; 2019 Dec; 28(12):1054-1060. PubMed ID: 31790033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Progression of Localized Retinal Nerve Fiber Layer Defects in Red-free Fundus Photograph, En Face Structural Image, and OCT Angiography Image.
    Ji MJ; Park JH; Yoo C; Kim YY
    J Glaucoma; 2020 Aug; 29(8):698-703. PubMed ID: 32398586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized Retinal Nerve Fiber Layer Defects in Red-free Photographs Versus En Face Structural Optical Coherence Tomography Images.
    Jung JH; Park JH; Yoo C; Kim YY
    J Glaucoma; 2018 Mar; 27(3):269-274. PubMed ID: 29303874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities.
    Hwang YH; Kim YY; Kim HK; Sohn YH
    Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agreement of retinal nerve fiber layer defect location between red-free fundus photography and cirrus HD-OCT maps.
    Hwang YH; Kim YY; Kim HK; Sohn YH
    Curr Eye Res; 2014 Nov; 39(11):1099-105. PubMed ID: 24749850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrepancy between optic disc and nerve fiber layer assessment and optical coherence tomography in detecting glaucomatous progression.
    Lee JR; Sung KR; Na JH; Shon K; Lee KS
    Jpn J Ophthalmol; 2013 Nov; 57(6):546-52. PubMed ID: 24097099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of retinal nerve fiber layer defect depth using spectral-domain optical coherence tomography.
    Suh MH; Yoo BW; Kim JY; Choi YJ; Park KH; Kim HC
    Ophthalmology; 2014 Jul; 121(7):1333-40. PubMed ID: 24612980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of localized retinal nerve fiber layer defects using spectral domain optical coherence tomography.
    Shin JW; Uhm KB; Seo S
    J Glaucoma; 2015; 24(5):335-43. PubMed ID: 23970341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects.
    Jeoung JW; Park KH; Kim TW; Khwarg SI; Kim DM
    Ophthalmology; 2005 Dec; 112(12):2157-63. PubMed ID: 16290196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic disc hemorrhage may be associated with retinal nerve fiber loss in otherwise normal eyes.
    Jeoung JW; Park KH; Kim JM; Kang SH; Kang JH; Kim TW; Kim DM
    Ophthalmology; 2008 Dec; 115(12):2132-40. PubMed ID: 19041474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography.
    Sakamoto A; Hangai M; Nukada M; Nakanishi H; Mori S; Kotera Y; Inoue R; Yoshimura N
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5062-70. PubMed ID: 20463326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of retinal nerve fiber layer imaging by spectral domain optical coherence tomography and scanning laser ophthalmoscopy.
    Ye C; To E; Weinreb RN; Yu M; Liu S; Lam DS; Leung CK
    Ophthalmology; 2011 Nov; 118(11):2196-202. PubMed ID: 21762989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography.
    Hwang JM; Kim TW; Park KH; Kim DM; Kim H
    J Glaucoma; 2006 Jun; 15(3):223-8. PubMed ID: 16778645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss.
    Grewal DS; Sehi M; Greenfield DS
    Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of sensitivities for detecting diffuse and localized retinal nerve fiber layer defects with time-domain optical coherence tomography in patients with glaucoma.
    Yoo YC; Park KH
    J Glaucoma; 2013 Sep; 22(7):559-64. PubMed ID: 22274673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma.
    Son KY; Han JC; Kee C
    Acta Ophthalmol; 2022 Feb; 100(1):e174-e180. PubMed ID: 33742532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects.
    Lee EJ; Kim TW; Weinreb RN; Park KH; Kim SH; Kim DM
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):1138-44. PubMed ID: 21051691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
    Medeiros FA; Jammal AA; Mariottoni EB
    Ophthalmology; 2021 Mar; 128(3):383-392. PubMed ID: 32735906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.