BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 31915299)

  • 1. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents.
    Khazaei M; Ahuja CS; Nakashima H; Nagoshi N; Li L; Wang J; Chio J; Badner A; Seligman D; Ichise A; Shibata S; Fehlings MG
    Sci Transl Med; 2020 Jan; 12(525):. PubMed ID: 31915299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion.
    Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF
    Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury.
    Iwasaki M; Wilcox JT; Nishimura Y; Zweckberger K; Suzuki H; Wang J; Liu Y; Karadimas SK; Fehlings MG
    Biomaterials; 2014 Mar; 35(9):2617-29. PubMed ID: 24406216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury.
    Okubo T; Nagoshi N; Kohyama J; Tsuji O; Shinozaki M; Shibata S; Kase Y; Matsumoto M; Nakamura M; Okano H
    Stem Cell Reports; 2018 Dec; 11(6):1416-1432. PubMed ID: 30503258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
    Liu A; Kang S; Yu P; Shi L; Zhou L
    Neurosci Lett; 2020 Sep; 735():135201. PubMed ID: 32585253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decellularized extracellular matrix enriched with GDNF enhances neurogenesis and remyelination for improved motor recovery after spinal cord injury.
    Liu J; Yan R; Wang B; Chen S; Hong H; Liu C; Chen X
    Acta Biomater; 2024 May; 180():308-322. PubMed ID: 38615813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury.
    Macias MY; Syring MB; Pizzi MA; Crowe MJ; Alexanian AR; Kurpad SN
    Exp Neurol; 2006 Oct; 201(2):335-48. PubMed ID: 16839548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS].
    Liao Y; Zhong D; Kang M; Yao S; Zhang Y; Yu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1009-15. PubMed ID: 26677625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury.
    Ito S; Nagoshi N; Kamata Y; Kojima K; Nori S; Matsumoto M; Takei K; Nakamura M; Okano H
    Stem Cell Reports; 2021 Nov; 16(11):2703-2717. PubMed ID: 34653401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function.
    Kawai M; Imaizumi K; Ishikawa M; Shibata S; Shinozaki M; Shibata T; Hashimoto S; Kitagawa T; Ago K; Kajikawa K; Shibata R; Kamata Y; Ushiba J; Koga K; Furue H; Matsumoto M; Nakamura M; Nagoshi N; Okano H
    Cell Rep; 2021 Nov; 37(8):110019. PubMed ID: 34818559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery.
    Sankavaram SR; Hakim R; Covacu R; Frostell A; Neumann S; Svensson M; Brundin L
    Stem Cell Reports; 2019 May; 12(5):950-966. PubMed ID: 31031190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing.
    Nagoshi N; Khazaei M; Ahlfors JE; Ahuja CS; Nori S; Wang J; Shibata S; Fehlings MG
    Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model.
    Nutt SE; Chang EA; Suhr ST; Schlosser LO; Mondello SE; Moritz CT; Cibelli JB; Horner PJ
    Exp Neurol; 2013 Oct; 248():491-503. PubMed ID: 23891888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair.
    Li X; Xiao Z; Han J; Chen L; Xiao H; Ma F; Hou X; Li X; Sun J; Ding W; Zhao Y; Chen B; Dai J
    Biomaterials; 2013 Jul; 34(21):5107-16. PubMed ID: 23591390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord.
    Karimi-Abdolrezaee S; Eftekharpour E; Wang J; Schut D; Fehlings MG
    J Neurosci; 2010 Feb; 30(5):1657-76. PubMed ID: 20130176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DLK1 promotes neurogenesis of human and mouse pluripotent stem cell-derived neural progenitors via modulating Notch and BMP signalling.
    Surmacz B; Noisa P; Risner-Janiczek JR; Hui K; Ungless M; Cui W; Li M
    Stem Cell Rev Rep; 2012 Jun; 8(2):459-71. PubMed ID: 21761283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermosensitive heparin-poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and neuroprotection after spinal cord injury.
    Zhao YZ; Jiang X; Lin Q; Xu HL; Huang YD; Lu CT; Cai J
    J Biomed Mater Res A; 2017 Oct; 105(10):2816-2829. PubMed ID: 28593744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.