BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3191530)

  • 1. ATP-dependent fusion of liposomes with the Golgi apparatus of perforated cells.
    Kobayashi T; Pagano RE
    Cell; 1988 Dec; 55(5):797-805. PubMed ID: 3191530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceramide excluded from cell-free vesicular lipid transfer from endoplasmic reticulum to Golgi apparatus. Evidence for lipid sorting.
    Moreau P; Cassagne C; Keenan TW; Morré DJ
    Biochim Biophys Acta; 1993 Feb; 1146(1):9-16. PubMed ID: 8443228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver.
    Moreau P; Rodriguez M; Cassagne C; Morré DM; Morré DJ
    J Biol Chem; 1991 Mar; 266(7):4322-8. PubMed ID: 1999421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms.
    Martin OC; Pagano RE
    J Cell Biol; 1994 May; 125(4):769-81. PubMed ID: 8188745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of vesiculated Golgi membranes into stacks of cisternae: requirement of NSF in stack formation.
    Acharya U; McCaffery JM; Jacobs R; Malhotra V
    J Cell Biol; 1995 May; 129(3):577-89. PubMed ID: 7730397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro fusion of rabbit liver Golgi membranes with liposomes.
    Kagiwada S; Murata M; Hishida R; Tagaya M; Yamashina S; Ohnishi S
    J Biol Chem; 1993 Jan; 268(2):1430-5. PubMed ID: 8419344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipidomic processes in homeostatic and LPS-modified cell renewal cycle. Role of phosphatidylinositol 3-kinase pathway in biomembrane synthesis and restitution of apical epithelial membrane.
    Slomiany A; Slomiany BL
    J Physiol Pharmacol; 2003 Dec; 54(4):533-51. PubMed ID: 14726609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts.
    Koval M; Pagano RE
    J Cell Biol; 1989 Jun; 108(6):2169-81. PubMed ID: 2738091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free transfer of membrane lipids. Evidence for lipid processing.
    Moreau P; Morré DJ
    J Biol Chem; 1991 Mar; 266(7):4329-33. PubMed ID: 1999422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNAREs and membrane fusion in the Golgi apparatus.
    Nichols BJ; Pelham HR
    Biochim Biophys Acta; 1998 Aug; 1404(1-2):9-31. PubMed ID: 9714710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular processes associated with glycoprotein transport and processing.
    Slomiany A; Grzelinska E; Grabska M; Yamaki K; Tamura S; Kasinathan C; Slomiany BL
    Arch Biochem Biophys; 1992 Oct; 298(1):167-75. PubMed ID: 1524425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane.
    Lipsky NG; Pagano RE
    J Cell Biol; 1985 Jan; 100(1):27-34. PubMed ID: 3965473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena.
    Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD
    J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes.
    Lupashin VV; Hamamoto S; Schekman RW
    J Cell Biol; 1996 Feb; 132(3):277-89. PubMed ID: 8636207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular sites involved in the biogenesis of bile canaliculi in hepatic cells.
    Zaal KJ; Kok JW; Sormunen R; Eskelinen S; Hoekstra D
    Eur J Cell Biol; 1994 Feb; 63(1):10-9. PubMed ID: 8005096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ethanol on intracellular vesicular transport from Golgi to the apical cell membrane: role of phosphatidylinositol 3-kinase and phospholipase A2 in Golgi transport vesicles association and fusion with the apical membrane.
    Slomiany A; Nowak P; Piotrowski E; Slomiany BL
    Alcohol Clin Exp Res; 1998 Feb; 22(1):167-75. PubMed ID: 9514303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex.
    Duran JM; Campelo F; van Galen J; Sachsenheimer T; Sot J; Egorov MV; Rentero C; Enrich C; Polishchuk RS; Goñi FM; Brügger B; Wieland F; Malhotra V
    EMBO J; 2012 Dec; 31(24):4535-46. PubMed ID: 23178595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor.
    Pagano RE; Martin OC; Kang HC; Haugland RP
    J Cell Biol; 1991 Jun; 113(6):1267-79. PubMed ID: 2045412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack.
    Malhotra V; Orci L; Glick BS; Block MR; Rothman JE
    Cell; 1988 Jul; 54(2):221-7. PubMed ID: 3390865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium.
    Miller SG; Moore HP
    J Cell Biol; 1991 Jan; 112(1):39-54. PubMed ID: 1986006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.