These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31915756)

  • 1. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength?
    Eftekhari M; Schwarzenberger K; Javadi A; Eckert K
    Phys Chem Chem Phys; 2020 Jan; 22(4):2238-2248. PubMed ID: 31915756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Electrostatic Repulsion on Increasing Surface Activity of Anionic Surfactants in the Presence of Hydrophilic Silica Nanoparticles.
    Vatanparast H; Shahabi F; Bahramian A; Javadi A; Miller R
    Sci Rep; 2018 May; 8(1):7251. PubMed ID: 29740036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydrophilic silica nanoparticles on the adsorption layer properties of non-ionic surfactants at water/heptane interface.
    Vatanparast H; Eftekhari M; Javadi A; Miller R; Bahramian A
    J Colloid Interface Sci; 2019 Jun; 545():242-250. PubMed ID: 30897419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface.
    Jin J; Li X; Geng J; Jing D
    Phys Chem Chem Phys; 2018 Jun; 20(22):15223-15235. PubMed ID: 29789835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.
    Ríos F; Fernández-Arteaga A; Fernández-Serrano M; Jurado E; Lechuga M
    J Hazard Mater; 2018 Jul; 353():436-443. PubMed ID: 29704795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions.
    Khademi M; Wang W; Reitinger W; Barz DPJ
    Langmuir; 2017 Oct; 33(40):10473-10482. PubMed ID: 28915350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foamability of aqueous solutions: Role of surfactant type and concentration.
    Petkova B; Tcholakova S; Chenkova M; Golemanov K; Denkov N; Thorley D; Stoyanov S
    Adv Colloid Interface Sci; 2020 Feb; 276():102084. PubMed ID: 31884021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Nanoparticle-Micelle Interactions and Resultant Phase Behavior.
    Ray D; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2018 Jan; 34(1):259-267. PubMed ID: 29202235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Different Surfactants on the Interfacial Behavior of the n-Hexane-Water System in the Presence of Silica Nanoparticles.
    Biswal NR; Rangera N; Singh JK
    J Phys Chem B; 2016 Jul; 120(29):7265-74. PubMed ID: 27367433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration.
    Trzaskus KW; Lee SL; de Vos WM; Kemperman A; Nijmeijer K
    J Colloid Interface Sci; 2017 Nov; 506():308-318. PubMed ID: 28738282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants.
    Tian C; Feng J; Prud'homme RK
    J Colloid Interface Sci; 2020 Sep; 575():416-424. PubMed ID: 32388288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of nanoparticle-surfactant interactions in aqueous system.
    Kumar S; Aswal VK
    J Phys Condens Matter; 2011 Jan; 23(3):035101. PubMed ID: 21406856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Surfactant Charge and Concentration on the Change in the Forces between Two Charged Surfaces in Surfactant Solutions by a Liquid Flow.
    McNamee CE; Kawakami H
    Langmuir; 2020 Mar; 36(8):1887-1897. PubMed ID: 32031815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters.
    Karakashev SI; Smoukov SK
    J Colloid Interface Sci; 2017 Sep; 501():142-149. PubMed ID: 28448834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of ionic surfactants to purified humic acid.
    Koopal LK; Goloub TP; Davis TA
    J Colloid Interface Sci; 2004 Jul; 275(2):360-7. PubMed ID: 15178260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment.
    Karraker KA; Radke CJ
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):231-64. PubMed ID: 11908789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact assessment of nanofluids containing mixtures of surfactants and silica nanoparticles.
    Lechuga M; Fernández-Serrano M; Ríos F; Fernández-Arteaga A; Jiménez-Robles R
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84125-84136. PubMed ID: 35778662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of adsorption versus depletion interaction for charged silica nanoparticles in the presence of non-ionic surfactant.
    Ray D; Aswal VK
    J Phys Condens Matter; 2014 Jan; 26(3):035102. PubMed ID: 24285358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.