BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31915815)

  • 1. A functional twintron, 'zombie' twintrons and a hypermobile group II intron invading itself in plant mitochondria.
    Zumkeller S; Gerke P; Knoop V
    Nucleic Acids Res; 2020 Mar; 48(5):2661-2675. PubMed ID: 31915815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases.
    Zumkeller S; Knoop V
    BMC Ecol Evol; 2023 Mar; 23(1):5. PubMed ID: 36915058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade.
    Volkmar U; Groth-Malonek M; Heinrichs J; Muhle H; Polsakiewicz M; Knoop V
    Plant Biol (Stuttg); 2012 Mar; 14(2):382-91. PubMed ID: 21973214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.
    Copertino DW; Christopher DA; Hallick RB
    Nucleic Acids Res; 1991 Dec; 19(23):6491-7. PubMed ID: 1721702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent evolution of twintron-like configurations: One is never enough.
    Hafez M; Hausner G
    RNA Biol; 2015; 12(12):1275-88. PubMed ID: 26513606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organellar Introns in Fungi, Algae, and Plants.
    Mukhopadhyay J; Hausner G
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor.
    Ahlert D; Piepenburg K; Kudla J; Bock R
    J Plant Res; 2006 Jul; 119(4):363-71. PubMed ID: 16763758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs.
    Bégu D; Araya A
    Curr Genet; 2009 Feb; 55(1):69-79. PubMed ID: 19112563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spliceosome twin introns in fungal nuclear transcripts.
    Flipphi M; Fekete E; Ag N; Scazzocchio C; Karaffa L
    Fungal Genet Biol; 2013 Aug; 57():48-57. PubMed ID: 23792080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2002 Jan; 19(1):24-38. PubMed ID: 11752187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast group III twintron excision utilizing multiple 5'- and 3'-splice sites.
    Copertino DW; Shigeoka S; Hallick RB
    EMBO J; 1992 Dec; 11(13):5041-50. PubMed ID: 1464326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organellar maturases: A window into the evolution of the spliceosome.
    Schmitz-Linneweber C; Lampe MK; Sultan LD; Ostersetzer-Biran O
    Biochim Biophys Acta; 2015 Sep; 1847(9):798-808. PubMed ID: 25626174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad.
    Maier UG; Rensing SA; Igloi GL; Maerz M
    Mol Gen Genet; 1995 Jan; 246(1):128-31. PubMed ID: 7823908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort.
    Malek O; Knoop V
    RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants.
    Turmel M; Otis C; Lemieux C
    Plant Cell; 2003 Aug; 15(8):1888-903. PubMed ID: 12897260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria.
    Li X; Jiang Y
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications.
    Dombrovska O; Qiu YL
    Mol Phylogenet Evol; 2004 Jul; 32(1):246-63. PubMed ID: 15186811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.