BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31915854)

  • 1. Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer.
    Holmström MO; Cordua S; Skov V; Kjær L; Pallisgaard N; Ellervik C; Hasselbalch HC; Andersen MH
    Cancer Immunol Immunother; 2020 Feb; 69(2):315-324. PubMed ID: 31915854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals.
    Holmström MO; Ahmad SM; Klausen U; Bendtsen SK; Martinenaite E; Riley CH; Svane IM; Kjær L; Skov V; Ellervik C; Pallisgaard N; Hasselbalch HC; Andersen MH
    Blood Cancer J; 2019 Jan; 9(2):8. PubMed ID: 30655510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms.
    Cimen Bozkus C; Roudko V; Finnigan JP; Mascarenhas J; Hoffman R; Iancu-Rubin C; Bhardwaj N
    Cancer Discov; 2019 Sep; 9(9):1192-1207. PubMed ID: 31266769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With
    Handlos Grauslund J; Holmström MO; Jørgensen NG; Klausen U; Weis-Banke SE; El Fassi D; Schöllkopf C; Clausen MB; Gjerdrum LMR; Breinholt MF; Kjeldsen JW; Hansen M; Koschmieder S; Chatain N; Novotny GW; Petersen J; Kjær L; Skov V; Met Ö; Svane IM; Hasselbalch HC; Andersen MH
    Front Oncol; 2021; 11():637420. PubMed ID: 33718228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
    Elf S; Abdelfattah NS; Chen E; Perales-Patón J; Rosen EA; Ko A; Peisker F; Florescu N; Giannini S; Wolach O; Morgan EA; Tothova Z; Losman JA; Schneider RK; Al-Shahrour F; Mullally A
    Cancer Discov; 2016 Apr; 6(4):368-81. PubMed ID: 26951227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
    Edahiro Y; Araki M; Komatsu N
    Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies.
    Tubb VM; Schrikkema DS; Croft NP; Purcell AW; Linnemann C; Freriks MR; Chen F; Long HM; Lee SP; Bendle GM
    J Immunother Cancer; 2018 Jul; 6(1):70. PubMed ID: 30001747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Imai M; Araki M; Komatsu N
    Int J Hematol; 2017 Jun; 105(6):743-747. PubMed ID: 28470469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow.
    Holmström MO; Andersen M; Traynor S; Ahmad SM; Lisle TL; Handlos Grauslund J; Skov V; Kjær L; Ottesen JT; Gjerstorff MF; Hasselbalch HC; Andersen MH
    Front Immunol; 2023; 14():1240678. PubMed ID: 37662956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a molecular diagnostic assay for CALR exon 9 indels in myeloproliferative neoplasms: identification of coexisting JAK2 and CALR mutations and a novel 9 bp deletion in CALR.
    Murugesan G; Guenther-Johnson J; Mularo F; Cook JR; Daly TM
    Int J Lab Hematol; 2016 Jun; 38(3):284-97. PubMed ID: 27018326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.
    Chachoua I; Pecquet C; El-Khoury M; Nivarthi H; Albu RI; Marty C; Gryshkova V; Defour JP; Vertenoeil G; Ngo A; Koay A; Raslova H; Courtoy PJ; Choong ML; Plo I; Vainchenker W; Kralovics R; Constantinescu SN
    Blood; 2016 Mar; 127(10):1325-35. PubMed ID: 26668133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
    Merlinsky TR; Levine RL; Pronier E
    Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy.
    Holmström MO; Martinenaite E; Ahmad SM; Met Ö; Friese C; Kjær L; Riley CH; Thor Straten P; Svane IM; Hasselbalch HC; Andersen MH
    Leukemia; 2018 Feb; 32(2):429-437. PubMed ID: 28676668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms.
    Araki M; Komatsu N
    Cancer Sci; 2017 Oct; 108(10):1907-1912. PubMed ID: 28741795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion.
    Han L; Schubert C; Köhler J; Schemionek M; Isfort S; Brümmendorf TH; Koschmieder S; Chatain N
    J Hematol Oncol; 2016 May; 9(1):45. PubMed ID: 27177927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation sensitive gel electrophoresis for the detection of calreticulin mutations in BCR-ABL1-negative myeloproliferative neoplasms.
    Zakaria NA; Rosle NA; Siti Asmaa MJ; Aziee S; Haiyuni MY; Samat NA; Husin A; Hassan R; Ramli M; Mohamed Yusoff S; Ibrahim IK; Al-Jamal HAN; Johan MF
    Int J Lab Hematol; 2021 Dec; 43(6):1451-1457. PubMed ID: 34125992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.
    Araki M; Yang Y; Masubuchi N; Hironaka Y; Takei H; Morishita S; Mizukami Y; Kan S; Shirane S; Edahiro Y; Sunami Y; Ohsaka A; Komatsu N
    Blood; 2016 Mar; 127(10):1307-16. PubMed ID: 26817954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The different variant allele frequencies of type I/type II mutations and the distinct molecular landscapes in
    Pan Y; Wang X; Wen S; Liu X; Yang L; Luo J
    Hematology; 2022 Dec; 27(1):902-908. PubMed ID: 36000955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skewed megakaryopoiesis in human induced pluripotent stem cell-derived haematopoietic progenitor cells harbouring calreticulin mutations.
    Takei H; Edahiro Y; Mano S; Masubuchi N; Mizukami Y; Imai M; Morishita S; Misawa K; Ochiai T; Tsuneda S; Endo H; Nakamura S; Eto K; Ohsaka A; Araki M; Komatsu N
    Br J Haematol; 2018 Jun; 181(6):791-802. PubMed ID: 29741776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN.
    Elf S; Abdelfattah NS; Baral AJ; Beeson D; Rivera JF; Ko A; Florescu N; Birrane G; Chen E; Mullally A
    Blood; 2018 Feb; 131(7):782-786. PubMed ID: 29288169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.