These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 31915886)
1. Metal ions and graphene-based compounds as alternative treatment options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. Karaky N; Kirby A; McBain AJ; Butler JA; El Mohtadi M; Banks CE; Whitehead KA Arch Microbiol; 2020 Jul; 202(5):995-1004. PubMed ID: 31915886 [TBL] [Abstract][Full Text] [Related]
2. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. Viganor L; Galdino AC; Nunes AP; Santos KR; Branquinha MH; Devereux M; Kellett A; McCann M; Santos AL J Antimicrob Chemother; 2016 Jan; 71(1):128-34. PubMed ID: 26416778 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes. Vaidya MY; McBain AJ; Butler JA; Banks CE; Whitehead KA Sci Rep; 2017 Jul; 7(1):5911. PubMed ID: 28724953 [TBL] [Abstract][Full Text] [Related]
4. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Hengzhuang W; Wu H; Ciofu O; Song Z; Høiby N Antimicrob Agents Chemother; 2012 May; 56(5):2683-90. PubMed ID: 22354300 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Nour El Din S; El-Tayeb TA; Abou-Aisha K; El-Azizi M Int J Nanomedicine; 2016; 11():1749-58. PubMed ID: 27175075 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Benthall G; Touzel RE; Hind CK; Titball RW; Sutton JM; Thomas RJ; Wand ME Int J Antimicrob Agents; 2015 Nov; 46(5):538-45. PubMed ID: 26364845 [TBL] [Abstract][Full Text] [Related]
7. Rhenium and yttrium ions as antimicrobial agents against multidrug resistant Klebsiella pneumoniae and Acinetobacter baumannii biofilms. Slate AJ; Shalamanova L; Akhidime ID; Whitehead KA Lett Appl Microbiol; 2019 Sep; 69(3):168-174. PubMed ID: 30929272 [TBL] [Abstract][Full Text] [Related]
8. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. Cooper RA; Halas E; Molan PC J Burn Care Rehabil; 2002; 23(6):366-70. PubMed ID: 12432313 [TBL] [Abstract][Full Text] [Related]
9. Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene (rh1R) in drug-resistance Pseudomonas aeruginosa burn isolates. Gholamrezazadeh M; Shakibaie MR; Monirzadeh F; Masoumi S; Hashemizadeh Z Burns; 2018 May; 44(3):700-708. PubMed ID: 29290510 [TBL] [Abstract][Full Text] [Related]
10. Relationship Among Antibiotic Resistance, Biofilm Formation and lasB Gene in Pseudomonas Aeruginosa Isolated from Burn Patients. Roshani-Asl P; Rashidi N; Shokoohizadeh L; Zarei J Clin Lab; 2018 Sep; 64(9):1477-1484. PubMed ID: 30274028 [TBL] [Abstract][Full Text] [Related]
11. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. Gugala N; Lemire JA; Turner RJ J Antibiot (Tokyo); 2017 Jun; 70(6):775-780. PubMed ID: 28196974 [TBL] [Abstract][Full Text] [Related]
12. Anti-Biofilm Enzymes-Assisted Antibiotic Therapy against Burn Wound Infection by Pseudomonas aeruginosa. Zhang Y; Liu X; Wen H; Cheng Z; Zhang Y; Zhang H; Mi Z; Fan X Antimicrob Agents Chemother; 2023 Jul; 67(7):e0030723. PubMed ID: 37272814 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds. Raouf M; Essa S; El Achy S; Essawy M; Rafik S; Baddour M Indian J Med Microbiol; 2021 Jan; 39(1):81-87. PubMed ID: 33460732 [TBL] [Abstract][Full Text] [Related]
14. Effect of Graphene Oxide and Silver Nanoparticles Hybrid Composite on Lozovskis P; Jankauskaitė V; Guobienė A; Kareivienė V; Vitkauskienė A Int J Nanomedicine; 2020; 15():5147-5163. PubMed ID: 32764942 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial resistance, biofilm-forming ability and virulence potential of Pseudomonas aeruginosa isolated from burn patients in northern Iran. Asadpour L J Glob Antimicrob Resist; 2018 Jun; 13():214-220. PubMed ID: 29421318 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the anti-biofilm and antibacterial effects of Juglans regia L. extracts against clinical isolates of Pseudomonas aeruginosa. Dolatabadi S; Moghadam HN; Mahdavi-Ourtakand M Microb Pathog; 2018 May; 118():285-289. PubMed ID: 29605650 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Teitzel GM; Parsek MR Appl Environ Microbiol; 2003 Apr; 69(4):2313-20. PubMed ID: 12676715 [TBL] [Abstract][Full Text] [Related]
18. Peganum harmalapeptides (PhAMP) impede bacterial growth and biofilm formation in burn and surgical wound pathogens. Khalid R; Jaffar Q; Tayyeb A; Qaisar U Pak J Pharm Sci; 2018 Nov; 31(6 (Supplementary):2597-2605. PubMed ID: 30587467 [TBL] [Abstract][Full Text] [Related]
19. AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection. Barry A; Panmanee W; Hassett DJ; Satish L Infect Immun; 2021 Oct; 89(11):e0033621. PubMed ID: 34424744 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01. Aswathanarayan JB; Vittal RR Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]