These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31915980)

  • 1. Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments.
    Waudby CA; Ouvry M; Davis B; Christodoulou J
    J Biomol NMR; 2020 Jan; 74(1):95-109. PubMed ID: 31915980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Peaks in Simple Two-Dimensional NMR Experiments from Chemical Exchange of Transverse Magnetisation.
    Waudby CA; Frenkiel T; Christodoulou J
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8784-8788. PubMed ID: 30997945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins.
    Gill ML; Palmer AG
    J Biomol NMR; 2011 Nov; 51(3):245-51. PubMed ID: 21918814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.
    Didenko T; Boelens R; Rüdiger SG
    Protein Eng Des Sel; 2011 Jan; 24(1-2):99-103. PubMed ID: 21062757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.
    Krishnamoorthy J; Yu VC; Mok YK
    PLoS One; 2010 Feb; 5(2):e8943. PubMed ID: 20174626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity-enhanced IPAP-SOFAST-HMQC for fast-pulsing 2D NMR with reduced radiofrequency load.
    Kern T; Schanda P; Brutscher B
    J Magn Reson; 2008 Feb; 190(2):333-8. PubMed ID: 18078771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.
    Markin CJ; Spyracopoulos L
    J Biomol NMR; 2012 Dec; 54(4):355-76. PubMed ID: 23086713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds.
    Schanda P; Kupce E; Brutscher B
    J Biomol NMR; 2005 Dec; 33(4):199-211. PubMed ID: 16341750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins.
    Orekhov VY; Korzhnev DM; Kay LE
    J Am Chem Soc; 2004 Feb; 126(6):1886-91. PubMed ID: 14871121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectively doubling the magnetic field in spin-1/2-spin-1, HSQC, HDQC, coupled HSQC, and coupled HDQC in solution NMR.
    Shekar SC; Backer JM; Girvin ME
    J Chem Phys; 2008 May; 128(18):184501. PubMed ID: 18532820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3D NOESY-[(1)H,(15)N,(1)H]-ZQ-TROSY NMR experiment with diagonal peak suppression.
    Pervushin KV; Wider G; Riek R; Wüthrich K
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9607-12. PubMed ID: 10449740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation.
    Iwahara J; Jung YS; Clore GM
    J Am Chem Soc; 2007 Mar; 129(10):2971-80. PubMed ID: 17300195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of aromatic [(13)C, (1)H] SOFAST-HMQC NMR experiment for nucleic acids.
    Sathyamoorthy B; Lee J; Kimsey I; Ganser LR; Al-Hashimi H
    J Biomol NMR; 2014 Nov; 60(2-3):77-83. PubMed ID: 25186910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins.
    Ollerenshaw JE; Tugarinov V; Skrynnikov NR; Kay LE
    J Biomol NMR; 2005 Sep; 33(1):25-41. PubMed ID: 16222555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CP-HISQC: a better version of HSQC experiment for intrinsically disordered proteins under physiological conditions.
    Yuwen T; Skrynnikov NR
    J Biomol NMR; 2014 Mar; 58(3):175-92. PubMed ID: 24496557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional NMR Lineshape Analysis.
    Waudby CA; Ramos A; Cabrita LD; Christodoulou J
    Sci Rep; 2016 Apr; 6():24826. PubMed ID: 27109776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.