These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31916159)
21. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Katsenovich YP; Miralles-Wilhelm FR Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566 [TBL] [Abstract][Full Text] [Related]
22. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041 [TBL] [Abstract][Full Text] [Related]
23. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
24. Separation and Analysis of Nanoscale Zero-Valent Iron from Soil. Li P; Lv F; Xu J; Yang K; Lin D Anal Chem; 2021 Jul; 93(29):10187-10195. PubMed ID: 34254793 [TBL] [Abstract][Full Text] [Related]
25. Are contaminated soil and groundwater remediation with nanoscale zero-valent iron sustainable? An analysis of case studies. Visentin C; Braun AB; Reginatto C; Cecchin I; Vanzetto GV; Thomé A Environ Pollut; 2024 Jul; 352():124167. PubMed ID: 38754689 [TBL] [Abstract][Full Text] [Related]
26. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579 [TBL] [Abstract][Full Text] [Related]
27. Green zero valent iron nanoparticles dispersion through a sandy column using different injection sequences. Soares A; Ramos S; Albergaria T; Delerue-Matos C Sci Total Environ; 2018 Oct; 637-638():935-942. PubMed ID: 29763875 [TBL] [Abstract][Full Text] [Related]
28. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Oleszczuk P; Kołtowski M Chemosphere; 2017 Feb; 168():1467-1476. PubMed ID: 27916262 [TBL] [Abstract][Full Text] [Related]
29. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
30. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Pei G; Zhu Y; Wen J; Pei Y; Li H Environ Pollut; 2020 Jan; 256():113407. PubMed ID: 31672374 [TBL] [Abstract][Full Text] [Related]
31. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. Karthick A; Roy B; Chattopadhyay P J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799 [TBL] [Abstract][Full Text] [Related]
32. Assessment of combined electro-nanoremediation of molinate contaminated soil. Gomes HI; Fan G; Mateus EP; Dias-Ferreira C; Ribeiro AB Sci Total Environ; 2014 Sep; 493():178-84. PubMed ID: 24946031 [TBL] [Abstract][Full Text] [Related]
33. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
34. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
35. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Zhang S; Yi K; Chen A; Shao J; Peng L; Luo S Ecotoxicology; 2022 Aug; 31(6):873-883. PubMed ID: 35834074 [TBL] [Abstract][Full Text] [Related]
36. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis. Asad MA; Khan UT; Krol MM J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819 [TBL] [Abstract][Full Text] [Related]
37. Optimum conditions of zero-valent iron nanoparticle stabilized foam application for diesel-contaminated soil remediation involving three major soil types. Karthick A; Chattopadhyay P Environ Monit Assess; 2021 Aug; 193(9):611. PubMed ID: 34462822 [TBL] [Abstract][Full Text] [Related]
38. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Cao Y; Zhang S; Zhong Q; Wang G; Xu X; Li T; Wang L; Jia Y; Li Y Ecotoxicol Environ Saf; 2018 Oct; 162():464-473. PubMed ID: 30015193 [TBL] [Abstract][Full Text] [Related]
39. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Gomes HI; Dias-Ferreira C; Ottosen LM; Ribeiro AB Chemosphere; 2015 Jul; 131():157-63. PubMed ID: 25841071 [TBL] [Abstract][Full Text] [Related]
40. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Gallego JR; Lobo MC Sci Total Environ; 2017 Apr; 584-585():1324-1332. PubMed ID: 28190571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]