These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 31916374)

  • 1. Mapping neural dynamics underlying saccade preparation and execution and their relation to reaction time and direction errors.
    Bells S; Isabella SL; Brien DC; Coe BC; Munoz DP; Mabbott DJ; Cheyne DO
    Hum Brain Mapp; 2020 May; 41(7):1934-1949. PubMed ID: 31916374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.
    Talanow T; Kasparbauer AM; Steffens M; Meyhöfer I; Weber B; Smyrnis N; Ettinger U
    Brain Cogn; 2016 Aug; 107():37-47. PubMed ID: 27363008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    Acta Psychol (Amst); 2014 Feb; 146():67-72. PubMed ID: 24412836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical activation associated with midtrial change of instruction in a saccade task.
    Matthews A; Flohr H; Everling S
    Exp Brain Res; 2002 Apr; 143(4):488-98. PubMed ID: 11914795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.
    Pierce JE; McDowell JE
    J Neurophysiol; 2016 Feb; 115(2):763-72. PubMed ID: 26609113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccadic preparation in the frontal eye field is modulated by distinct trial history effects as revealed by magnetoencephalography.
    Lee AK; Hämäläinen MS; Dyckman KA; Barton JJ; Manoach DS
    Cereb Cortex; 2011 Feb; 21(2):245-53. PubMed ID: 20522539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-related potentials associated with correct and incorrect responses in a cued antisaccade task.
    Everling S; Spantekow A; Krappmann P; Flohr H
    Exp Brain Res; 1998 Jan; 118(1):27-34. PubMed ID: 9547075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of the frontal eye field reveals persistent effective connectivity after controlled behavior.
    Akaishi R; Morishima Y; Rajeswaren VP; Aoki S; Sakai K
    J Neurosci; 2010 Mar; 30(12):4295-305. PubMed ID: 20335465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades.
    Van Der Werf J; Jensen O; Fries P; Medendorp WP
    J Neurosci; 2008 Aug; 28(34):8397-405. PubMed ID: 18716198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field.
    Everling S; Munoz DP
    J Neurosci; 2000 Jan; 20(1):387-400. PubMed ID: 10627615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates.
    Bell AH; Everling S; Munoz DP
    J Neurophysiol; 2000 Nov; 84(5):2595-604. PubMed ID: 11068001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural activity is modulated by trial history: a functional magnetic resonance imaging study of the effects of a previous antisaccade.
    Manoach DS; Thakkar KN; Cain MS; Polli FE; Edelman JA; Fischl B; Barton JJ
    J Neurosci; 2007 Feb; 27(7):1791-8. PubMed ID: 17301186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback.
    Herdman AT; Ryan JD
    J Cogn Neurosci; 2007 Mar; 19(3):420-32. PubMed ID: 17335391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.