These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 31916374)

  • 21. Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task.
    Fernandez-Ruiz J; Peltsch A; Alahyane N; Brien DC; Coe BC; Garcia A; Munoz DP
    Neuroimage; 2018 Jan; 165():92-101. PubMed ID: 28988829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical neurodynamics of inhibitory control.
    Hwang K; Ghuman AS; Manoach DS; Jones SR; Luna B
    J Neurosci; 2014 Jul; 34(29):9551-61. PubMed ID: 25031398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated?
    Basu D; Murthy A
    J Neurophysiol; 2020 Jan; 123(1):107-119. PubMed ID: 31721632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades.
    Wang CA; Brien DC; Munoz DP
    Eur J Neurosci; 2015 Apr; 41(8):1102-10. PubMed ID: 25817064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstimulation of monkey dorsolateral prefrontal cortex impairs antisaccade performance.
    Wegener SP; Johnston K; Everling S
    Exp Brain Res; 2008 Oct; 190(4):463-73. PubMed ID: 18641976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccade suppression by electrical microstimulation in monkey caudate nucleus.
    Watanabe M; Munoz DP
    J Neurosci; 2010 Feb; 30(7):2700-9. PubMed ID: 20164354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixed pro and antisaccade performance in children and adults.
    Irving EL; Tajik-Parvinchi DJ; Lillakas L; González EG; Steinbach MJ
    Brain Res; 2009 Feb; 1255():67-74. PubMed ID: 19103183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced Cognitive Control Demands after Practice of Saccade Tasks in a Trial Type Probability Manipulation.
    Pierce JE; McDowell JE
    J Cogn Neurosci; 2017 Feb; 29(2):368-381. PubMed ID: 27676615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human fMRI evidence for the neural correlates of preparatory set.
    Connolly JD; Goodale MA; Menon RS; Munoz DP
    Nat Neurosci; 2002 Dec; 5(12):1345-52. PubMed ID: 12411958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad.
    Johnston K; Ma L; Schaeffer L; Everling S
    J Neurosci; 2019 Mar; 39(10):1855-1866. PubMed ID: 30651331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Event-related potentials before saccades and antisaccades and their relation to reaction time.
    Papadopoulou M; Evdokimidis I; Tsoukas E; Mantas A; Smyrnis N
    Exp Brain Res; 2010 Sep; 205(4):521-31. PubMed ID: 20711563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. fMRI activation in the human frontal eye field is correlated with saccadic reaction time.
    Connolly JD; Goodale MA; Goltz HC; Munoz DP
    J Neurophysiol; 2005 Jul; 94(1):605-11. PubMed ID: 15590732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks.
    Pierce JE; McDowell JE
    Brain Cogn; 2017 Jul; 115():12-20. PubMed ID: 28371646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance.
    Amador N; Schlag-Rey M; Schlag J
    J Neurophysiol; 2004 Apr; 91(4):1672-89. PubMed ID: 14645374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents.
    Hwang K; Ghuman AS; Manoach DS; Jones SR; Luna B
    Neuroimage; 2016 Aug; 136():139-48. PubMed ID: 27173759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparatory neural networks are impaired in adults with attention-deficit/hyperactivity disorder during the antisaccade task.
    Hakvoort Schwerdtfeger RM; Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage Clin; 2012; 2():63-78. PubMed ID: 24179760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early event-related cortical activity originating in the frontal eye fields and inferior parietal lobe predicts the occurrence of correct and error saccades.
    Ptak R; Camen C; Morand S; Schnider A
    Hum Brain Mapp; 2011 Mar; 32(3):358-69. PubMed ID: 21319265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI.
    Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC
    Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.