BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31916401)

  • 1. Evaluation and verification of a simplified lead equivalency measurement method.
    Wargo RR; Aljabal AF; Lin PP
    J Appl Clin Med Phys; 2020 Feb; 21(2):152-156. PubMed ID: 31916401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and verification of lead thickness of commercially available lead foil tape for the measurements of lead equivalency of radio-protective shields.
    Lin PP; Aljabal AF; Wargo RR
    J Appl Clin Med Phys; 2020 Jul; 21(7):216-220. PubMed ID: 32558227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of lead equivalence of radiation protection apparatuses as a function of tube potential and spectral shaping filter.
    Aljabal AF; Wargo RR; Lin PP
    J Appl Clin Med Phys; 2019 Dec; 20(12):204-209. PubMed ID: 31738469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the (f)utility of measuring the lead equivalence of protective garments.
    Jones AK; Wagner LK
    Med Phys; 2013 Jun; 40(6):063902. PubMed ID: 23718618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the diagnostic radiological index of protection to protective garments.
    Pasciak AS; Jones AK; Wagner LK
    Med Phys; 2015 Feb; 42(2):653-662. PubMed ID: 28102605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Not all lightweight lead aprons and thyroid shields are alike.
    Fakhoury E; Provencher JA; Subramaniam R; Finlay DJ
    J Vasc Surg; 2019 Jul; 70(1):246-250. PubMed ID: 30292602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation Protection Clothing in X-Ray Diagnostics - Influence of the Different Methods of Measurement on the Lead Equivalent and the Required Mass.
    Schöpf T; Pichler T
    Rofo; 2016 Aug; 188(8):768-75. PubMed ID: 27248650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent thicknesses of beam hardening filters consisting of aluminium, copper, Al/Cu and Al/Gold combinations and plumbiferous acrylic for 40 to 150 kVp diagnostic spectra.
    Homolka P; Figl M
    J Radiol Prot; 2018 Dec; 38(4):1269-1283. PubMed ID: 30115815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of beam energy and filtration on the signal-to-noise ratio of the Dexis intraoral X-ray detector.
    Kitagawa H; Farman AG
    Dentomaxillofac Radiol; 2004 Jan; 33(1):21-4. PubMed ID: 15140818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields.
    Mori H; Koshida K; Ishigamori O; Matsubara K
    Radiol Phys Technol; 2014 Jan; 7(1):158-66. PubMed ID: 24338033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of using scatter-mimicking beams instead of standard beams to measure penetration when assessing the protective value of radiation-protective garments.
    Jones AK; Pasciak AS; Wagner LK
    Med Phys; 2018 Mar; 45(3):1071-1079. PubMed ID: 29314058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E; Dobbins JT; Lo JY; Tornai MP
    Radiat Prot Dosimetry; 2005; 114(1-3):220-9. PubMed ID: 15933112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the transmitted exposure through lead equivalent aprons used in a radiology department, including the contribution from backscatter.
    Christodoulou EG; Goodsitt MM; Larson SC; Darner KL; Satti J; Chan HP
    Med Phys; 2003 Jun; 30(6):1033-8. PubMed ID: 12852526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lightweight Lead Aprons: The Emperor's New Clothes in the Angiography Suite?
    Lu H; Boyd C; Dawson J
    Eur J Vasc Endovasc Surg; 2019 May; 57(5):730-739. PubMed ID: 31005510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Radiation protection clothing in X-ray diagnostics - comparison of attenuation equivalents in narrow beam and inverse broad-beam geometry].
    Pichler T; Schöpf T; Ennemoser O
    Rofo; 2011 May; 183(5):470-6. PubMed ID: 21246474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low dose high energy x-ray in-line phase sensitive imaging prototype: Investigation of optimal geometric conditions and design parameters.
    Ghani MU; Yan A; Wong MD; Li Y; Ren L; Wu X; Liu H
    J Xray Sci Technol; 2015; 23(6):667-82. PubMed ID: 26756405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.
    Ay MR; Mehranian A; Maleki A; Ghadiri H; Ghafarian P; Zaidi H
    Phys Med; 2013 May; 29(3):249-60. PubMed ID: 22541061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective aprons in imaging departments: manufacturer stated lead equivalence values require validation.
    Finnerty M; Brennan PC
    Eur Radiol; 2005 Jul; 15(7):1477-84. PubMed ID: 15789212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Loss of image quality due to the image output of a digital radiographic system].
    Jungnickel K; Redlich U
    Z Med Phys; 2009; 19(1):67-72. PubMed ID: 19459587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating radiographic parameters for mobile chest computed radiography: phantoms, image quality and effective dose.
    Rill LN; Brateman L; Arreola M
    Med Phys; 2003 Oct; 30(10):2727-35. PubMed ID: 14596311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.