These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31916511)

  • 21. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?
    Calabrò RS; Cacciola A; Bertè F; Manuli A; Leo A; Bramanti A; Naro A; Milardi D; Bramanti P
    Neurol Sci; 2016 Apr; 37(4):503-14. PubMed ID: 26781943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromechanical-assisted training for walking after stroke.
    Mehrholz J; Werner C; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2007 Oct; (4):CD006185. PubMed ID: 17943893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse-dynamics based assessment of gait using a robotic orthosis.
    Hidler J; Neckel N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():185-8. PubMed ID: 17946800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic-assisted gait training and restoration.
    Esquenazi A; Packel A
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S217-27; quiz S228-31. PubMed ID: 23080038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and evaluation of Mina: a robotic orthosis for paraplegics.
    Neuhaus PD; Noorden JH; Craig TJ; Torres T; Kirschbaum J; Pratt JE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975468. PubMed ID: 22275666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of partial body-weight support and functional electrical stimulation on gait characteristics during treadmill locomotion: Pros and cons of saddle-seat-type body-weight support.
    Kataoka N; Hirai H; Hamilton T; Yoshikawa F; Kuroiwa A; Nagakawa Y; Watanabe E; Ninomaru Y; Saeki Y; Uemura M; Miyazaki F; Nakata H; Nishi T; Naritomi H; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():381-386. PubMed ID: 28813849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons.
    Jiménez-Fabián R; Verlinden O
    Med Eng Phys; 2012 May; 34(4):397-408. PubMed ID: 22177895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotic rehabilitation of spinal cord injury individual.
    Karimi MT
    Ortop Traumatol Rehabil; 2013; 15(1):1-7. PubMed ID: 23510817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotic-assisted gait training in neurological patients: who may benefit?
    Schwartz I; Meiner Z
    Ann Biomed Eng; 2015 May; 43(5):1260-9. PubMed ID: 25724733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings.
    Swank C; Trammell M; Bennett M; Ochoa C; Callender L; Sikka S; Driver S
    Int J Rehabil Res; 2020 Sep; 43(3):206-213. PubMed ID: 32282573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What is it like to walk with the help of a robot? Children's perspectives on robotic gait training technology.
    Phelan SK; Gibson BE; Wright FV
    Disabil Rehabil; 2015; 37(24):2272-81. PubMed ID: 25856202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery and compensation after robotic assisted gait training in chronic stroke survivors.
    De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134
    [No Abstract]   [Full Text] [Related]  

  • 39. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cable-driven locomotor training system for restoration of gait in human SCI.
    Wu M; Hornby TG; Landry JM; Roth H; Schmit BD
    Gait Posture; 2011 Feb; 33(2):256-60. PubMed ID: 21232961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.