BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31916551)

  • 1. Antifouling strategies in advanced electrochemical sensors and biosensors.
    Lin PH; Li BR
    Analyst; 2020 Feb; 145(4):1110-1120. PubMed ID: 31916551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective and antifouling electrochemical biosensors for sensitive MicroRNA assaying based on conducting polymer polyaniline functionalized with zwitterionic peptide.
    Wang D; Wang J; Song Z; Hui N
    Anal Bioanal Chem; 2021 Jan; 413(2):543-553. PubMed ID: 33191454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifouling strategies for electrochemical sensing in complex biological media.
    Song Z; Han R; Yu K; Li R; Luo X
    Mikrochim Acta; 2024 Feb; 191(3):138. PubMed ID: 38361136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Electrochemical Biosensors Based on Antifouling Peptide Nanoparticles for Protein Quantification in Complex Biofluids.
    Song Z; Li Y; Li R; Fan GC; Luo X
    ACS Sens; 2024 Mar; 9(3):1525-1532. PubMed ID: 38377562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Super-Antifouling Electrochemical Biosensor for Protein Detection in Complex Biofluids Based on PEGylated Multifunctional Peptide.
    Shi M; Li Y; Wang W; Han R; Luo X
    ACS Sens; 2024 Jun; 9(6):2956-2963. PubMed ID: 38776243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide nucleic acid and antifouling peptide based biosensor for the non-fouling detection of COVID-19 nucleic acid in saliva.
    Li Y; Zhao S; Xu Z; Qiao X; Li M; Li Y; Luo X
    Biosens Bioelectron; 2023 Apr; 225():115101. PubMed ID: 36708624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifouling (Bio)materials for Electrochemical (Bio)sensing.
    Campuzano S; Pedrero M; Yáñez-Sedeño P; Pingarrón JM
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.
    Song Y; Luo Y; Zhu C; Li H; Du D; Lin Y
    Biosens Bioelectron; 2016 Feb; 76():195-212. PubMed ID: 26187396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Fouling Strategies of Electrochemical Sensors for Tumor Markers.
    Song G; Han H; Ma Z
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property.
    Zhao S; Liu N; Wang W; Xu Z; Wu Y; Luo X
    Biosens Bioelectron; 2021 Oct; 190():113466. PubMed ID: 34214764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemical biosensor for HER2 detection in complex biological media based on two antifouling materials of designed recognizing peptide and PEG.
    Yang X; Chen P; Zhang X; Zhou H; Song Z; Yang W; Luo X
    Anal Chim Acta; 2023 Apr; 1252():341075. PubMed ID: 36935142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid Bilayer Integrated with Multifunctional Peptide for Ultralow-Fouling Electrochemical Detection of HER2 in Human Serum.
    Li Y; Han R; Feng J; Li J; Luo X
    Anal Chem; 2024 Jan; 96(1):531-537. PubMed ID: 38115190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical antifouling strategies in sensors for food analysis: A review.
    Gu Y; Li Y; Wu Q; Wu Z; Sun L; Shang Y; Zhuang Y; Fan X; Yi L; Wang S
    Compr Rev Food Sci Food Saf; 2023 Sep; 22(5):4074-4106. PubMed ID: 37421317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum.
    Chen M; Song Z; Han R; Li Y; Luo X
    Biosens Bioelectron; 2021 Apr; 178():113016. PubMed ID: 33497878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum.
    Wang Y; Cui M; Jiao M; Luo X
    Anal Bioanal Chem; 2018 Sep; 410(23):5871-5878. PubMed ID: 29938372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF-assisted antifouling material: application in rapid determination of TB gene in whole-serum specimens.
    Wu C; Ma Y; Zhou Y; Yang W; Chen L
    Analyst; 2022 Jan; 147(2):282-292. PubMed ID: 34901972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids.
    Mauriz E
    Biosensors (Basel); 2020 Jun; 10(6):. PubMed ID: 32531908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.
    Wang G; Han R; Su X; Li Y; Xu G; Luo X
    Biosens Bioelectron; 2017 Jun; 92():396-401. PubMed ID: 27829555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tackling the challenges of developing microneedle-based electrochemical sensors.
    Abdullah H; Phairatana T; Jeerapan I
    Mikrochim Acta; 2022 Nov; 189(11):440. PubMed ID: 36329339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids.
    Yang C; Yang C; Li X; Zhang A; He G; Wu Q; Liu X; Huang S; Huang X; Cui G; Hu N; Xie X; Hang T
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4450-4462. PubMed ID: 33443399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.