These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

864 related articles for article (PubMed ID: 31916746)

  • 1. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes.
    Lo KK
    Acc Chem Res; 2020 Jan; 53(1):32-44. PubMed ID: 31916746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents.
    Lo KK
    Acc Chem Res; 2015 Dec; 48(12):2985-95. PubMed ID: 26161527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications.
    Lee LC; Lo KK
    Chem Rev; 2024 Aug; 124(15):8825-9014. PubMed ID: 39052606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications.
    Lee LC; Lo KK
    J Am Chem Soc; 2022 Aug; 144(32):14420-14440. PubMed ID: 35925792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes.
    Lo KK; Choi AW; Law WH
    Dalton Trans; 2012 May; 41(20):6021-47. PubMed ID: 22241514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive Metal Complex Probes for Time-Gated Luminescence Biosensing and Imaging.
    Zhang R; Yuan J
    Acc Chem Res; 2020 Jul; 53(7):1316-1329. PubMed ID: 32574043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit.
    Lee LC; Lau JC; Liu HW; Lo KK
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1046-9. PubMed ID: 26617258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.
    Aron AT; Ramos-Torres KM; Cotruvo JA; Chang CJ
    Acc Chem Res; 2015 Aug; 48(8):2434-42. PubMed ID: 26215055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Fluorescent Lanthanide Salen Complexes: Photophysical Properties, Excited-State Dynamics, and Bioimaging.
    Yao Y; Yin HY; Ning Y; Wang J; Meng YS; Huang X; Zhang W; Kang L; Zhang JL
    Inorg Chem; 2019 Feb; 58(3):1806-1814. PubMed ID: 30576111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the Potential of Iridium(III)
    Mak EC; Chen Z; Lee LC; Leung PK; Yip AM; Shum J; Yiu SM; Yam VW; Lo KK
    J Am Chem Soc; 2024 Sep; 146(37):25589-25599. PubMed ID: 39248725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
    Lee Y; Cho W; Sung J; Kim E; Park SB
    J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of d6 transition metal complexes in fluorescence cell imaging.
    Fernández-Moreira V; Thorp-Greenwood FL; Coogan MP
    Chem Commun (Camb); 2010 Jan; 46(2):186-202. PubMed ID: 20024327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color-Tunable Light-up Bioorthogonal Probes for In Vivo Two-Photon Fluorescence Imaging.
    Dou Y; Wang Y; Duan Y; Liu B; Hu Q; Shen W; Sun H; Zhu Q
    Chemistry; 2020 Apr; 26(20):4576-4582. PubMed ID: 31903629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes.
    Choi SK; Kim J; Kim E
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33810254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing New Bioorthogonal Reagents and Reactions.
    Row RD; Prescher JA
    Acc Chem Res; 2018 May; 51(5):1073-1081. PubMed ID: 29727171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof.
    Mancuso F; Rahm M; Dzijak R; Mertlíková-Kaiserová H; Vrabel M
    Chempluschem; 2020 Aug; 85(8):1669-1675. PubMed ID: 32757364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrazine-Isonitrile Bioorthogonal Fluorogenic Reactions Enable Multiplex Labeling and Wash-Free Bioimaging of Live Cells.
    Deng Y; Shen T; Yu X; Li J; Zou P; Gong Q; Zheng Y; Sun H; Liu X; Wu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202319853. PubMed ID: 38242857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Based Aggregation-Induced Emission Theranostic Systems.
    Shen H; Xu C; Sun F; Zhao M; Wu Q; Zhang J; Li S; Zhang J; Lam JWY; Tang BZ
    ChemMedChem; 2022 Feb; 17(3):e202100578. PubMed ID: 34837664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategies for bioorthogonal smart probes.
    Shieh P; Bertozzi CR
    Org Biomol Chem; 2014 Dec; 12(46):9307-20. PubMed ID: 25315039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.