These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 31916769)
1. Nonadiabatic Molecular Dynamics at Metal Surfaces. Dou W; Subotnik JE J Phys Chem A; 2020 Feb; 124(5):757-771. PubMed ID: 31916769 [TBL] [Abstract][Full Text] [Related]
2. A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit. Dou W; Subotnik JE J Chem Phys; 2016 Jan; 144(2):024116. PubMed ID: 26772563 [TBL] [Abstract][Full Text] [Related]
3. A comparison of surface hopping approaches for capturing metal-molecule electron transfer: A broadened classical master equation versus independent electron surface hopping. Miao G; Ouyang W; Subotnik J J Chem Phys; 2019 Jan; 150(4):041711. PubMed ID: 30709317 [TBL] [Abstract][Full Text] [Related]
4. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping. Wang Y; Dou W J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655774 [TBL] [Abstract][Full Text] [Related]
5. Frictional effects near a metal surface. Dou W; Nitzan A; Subotnik JE J Chem Phys; 2015 Aug; 143(5):054103. PubMed ID: 26254638 [TBL] [Abstract][Full Text] [Related]
6. A Generalized Surface Hopping Algorithm To Model Nonadiabatic Dynamics near Metal Surfaces: The Case of Multiple Electronic Orbitals. Dou W; Subotnik JE J Chem Theory Comput; 2017 Jun; 13(6):2430-2439. PubMed ID: 28467702 [TBL] [Abstract][Full Text] [Related]
7. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. Gardner J; Habershon S; Maurer RJ J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(31):15257-15270. PubMed ID: 37583439 [TBL] [Abstract][Full Text] [Related]
8. A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin. Wu Y; Bian X; Rawlinson JI; Littlejohn RG; Subotnik JE J Chem Phys; 2022 Jul; 157(1):011101. PubMed ID: 35803809 [TBL] [Abstract][Full Text] [Related]
9. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory. Curchod BF; Rothlisberger U; Tavernelli I Chemphyschem; 2013 May; 14(7):1314-40. PubMed ID: 23625831 [TBL] [Abstract][Full Text] [Related]
10. Mixed quantum mechanical/molecular mechanical (QM/MM) simulations of adiabatic and nonadiabatic ultrafast phenomena. Curchod BF; Campomanes P; Laktionov A; Neri M; Penfold TJ; Vanni S; Tavernelli I; Rothlisberger U Chimia (Aarau); 2011; 65(5):330-3. PubMed ID: 21744687 [TBL] [Abstract][Full Text] [Related]
11. Nonadiabatic dynamics at metal surfaces: independent electron surface hopping with phonon and electron thermostats. Shenvi N; Tully JC Faraday Discuss; 2012; 157():325-35; discussion 375-98. PubMed ID: 23230776 [TBL] [Abstract][Full Text] [Related]
13. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Kroes GJ; Díaz C Chem Soc Rev; 2016 Jun; 45(13):3658-700. PubMed ID: 26235525 [TBL] [Abstract][Full Text] [Related]
14. A broadened classical master equation approach for treating electron-nuclear coupling in non-equilibrium transport. Dou W; Schinabeck C; Thoss M; Subotnik JE J Chem Phys; 2018 Mar; 148(10):102317. PubMed ID: 29544278 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of Barrier Crossings for the Generalized Anderson-Holstein Model: Beyond Electronic Friction and Conventional Surface Hopping. Ouyang W; Dou W; Jain A; Subotnik JE J Chem Theory Comput; 2016 Sep; 12(9):4178-83. PubMed ID: 27564005 [TBL] [Abstract][Full Text] [Related]
16. Nonadiabatic dynamics of molecules interacting with metal surfaces: A quantum-classical approach based on Langevin dynamics and the hierarchical equations of motion. Rudge SL; Kaspar C; Grether RL; Wolf S; Stock G; Thoss M J Chem Phys; 2024 May; 160(18):. PubMed ID: 38716846 [TBL] [Abstract][Full Text] [Related]
17. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping. Shenvi N; Roy S; Tully JC J Chem Phys; 2009 May; 130(17):174107. PubMed ID: 19425769 [TBL] [Abstract][Full Text] [Related]
18. Metal-Induced Fast Vibrational Energy Relaxation: Quantum Nuclear Effects Captured in Diabatic Independent Electron Surface Hopping (IESH-D) Method. De PK; Jain A J Phys Chem A; 2023 May; 127(18):4166-4179. PubMed ID: 37132500 [TBL] [Abstract][Full Text] [Related]
19. Ring Polymer Surface Hopping: Incorporating Nuclear Quantum Effects into Nonadiabatic Molecular Dynamics Simulations. Shakib FA; Huo P J Phys Chem Lett; 2017 Jul; 8(13):3073-3080. PubMed ID: 28629220 [TBL] [Abstract][Full Text] [Related]
20. Vibrational relaxation at a metal surface: Electronic friction versus classical master equations. Miao G; Dou W; Subotnik J J Chem Phys; 2017 Dec; 147(22):224105. PubMed ID: 29246059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]