These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31916773)

  • 1. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the accuracy of the SNAP interatomic potential form.
    Wood MA; Thompson AP
    J Chem Phys; 2018 Jun; 148(24):241721. PubMed ID: 29960331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic and vibrational properties of group IV semiconductors in empirical potential modelling.
    Monteverde U; Migliorato MA; Pal J; Powell D
    J Phys Condens Matter; 2013 Oct; 25(42):425801. PubMed ID: 24065386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new kind of atlas of zeolite building blocks.
    Helfrecht BA; Semino R; Pireddu G; Auerbach SM; Ceriotti M
    J Chem Phys; 2019 Oct; 151(15):154112. PubMed ID: 31640382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedded-atom-method interatomic potentials from lattice inversion.
    Yuan XJ; Chen NX; Shen J; Hu W
    J Phys Condens Matter; 2010 Sep; 22(37):375503. PubMed ID: 21403199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the thermal conductivity of Si, Ge and diamond from first principles: roles of atomic mass and interatomic potential.
    Guo G; Yang X; Carrete J; Li W
    J Phys Condens Matter; 2021 May; 33(28):. PubMed ID: 33930883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR shifts in aluminosilicate glasses via machine learning.
    Chaker Z; Salanne M; Delaye JM; Charpentier T
    Phys Chem Chem Phys; 2019 Oct; 21(39):21709-21725. PubMed ID: 31389435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learning-Based Interatomic Potentials for Group IIB to VIA Semiconductors: Toward a Universal Model.
    Liu J; Zhang X; Chen T; Zhang Y; Zhang D; Zhang L; Chen M
    J Chem Theory Comput; 2024 Jul; 20(13):5717-5731. PubMed ID: 38898771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from the density to correct total energy and forces in first principle simulations.
    Dick S; Fernandez-Serra M
    J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transferable machine learning interatomic potential for carbon hydrogen systems.
    Faraji S; Liu M
    Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit Multielement Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems.
    Cusentino MA; Wood MA; Thompson AP
    J Phys Chem A; 2020 Jul; 124(26):5456-5464. PubMed ID: 32432859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions.
    Parsaeifard B; Goedecker S
    J Chem Phys; 2022 Jan; 156(3):034302. PubMed ID: 35065570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate and transferable machine learning potential for carbon.
    Rowe P; Deringer VL; Gasparotto P; Csányi G; Michaelides A
    J Chem Phys; 2020 Jul; 153(3):034702. PubMed ID: 32716159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.