These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 31917336)

  • 21. NORM emissions from heavy oil and natural gas fired power plants in Syria.
    Al-Masri MS; Haddad Kh
    J Environ Radioact; 2012 Feb; 104():71-4. PubMed ID: 22033192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigations on fly-ash and soil samples in the environment of a coal-fired power plant.
    Glöbel B; Andres C
    Sci Total Environ; 1985 Oct; 45():63-7. PubMed ID: 4081767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental effects of natural radionuclides from coal-fired power plants.
    Nakaoka A; Fukushima M; Takagi S
    Health Phys; 1984 Sep; 47(3):407-16. PubMed ID: 6500942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term carcinogenicity study in Syrian golden hamster of particulate emissions from coal- and oil-fired power plants.
    Persson SA; Ahlberg M; Berghem L; Könberg E; Nordberg GF; Bergman F
    Environ Health Perspect; 1988 Apr; 77():109-20. PubMed ID: 3383816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coal beneficiation technology to reduce hazardous heavy metals in fly ash.
    Park H; Wang L; Yun JH
    J Hazard Mater; 2021 Aug; 416():125853. PubMed ID: 34492803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.
    Ozden B; Guler E; Vaasma T; Horvath M; Kiisk M; Kovacs T
    J Environ Radioact; 2018 Aug; 188():100-107. PubMed ID: 28965987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of PM
    Fan M; Wang Y
    Environ Health; 2020 Mar; 19(1):28. PubMed ID: 32126999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PM1 particles at coal- and gas-fired power plant work areas.
    Hicks JB; McCarthy SA; Mezei G; Sayes CM
    Ann Occup Hyg; 2012 Mar; 56(2):182-93. PubMed ID: 22127876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.
    Li J; Gao X; Goeckner B; Kollakowsky D; Ramme B
    J Air Waste Manag Assoc; 2005 Mar; 55(3):258-64. PubMed ID: 15828667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical characterization and receptor modeling of PM
    Samara C; Argyropoulos G; Grigoratos T; Kouras Α; Manoli Ε; Andreadou S; Pavloudakis F; Sahanidis C
    Environ Sci Pollut Res Int; 2018 May; 25(13):12206-12221. PubMed ID: 28707246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash.
    Zhang Y; Mei D; Wang T; Wang J; Gu Y; Zhang Z; Romero CE; Pan WP
    Environ Sci Technol; 2019 Jul; 53(13):7913-7920. PubMed ID: 31188572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of mercury from fly ash on cattle reared nearby thermal power plant.
    Mahajan VE; Yadav RR; Dakshinkar NP; Dhoot VM; Bhojane GR; Naik MK; Shrivastava P; Naoghare PK; Krishnamurthi K
    Environ Monit Assess; 2012 Dec; 184(12):7365-72. PubMed ID: 22270591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radioactivity of size fractionated fly-ash emissions from a peat- and oil-fired power plant.
    Mustonen R; Jantunen M
    Health Phys; 1985 Dec; 49(6):1251-60. PubMed ID: 4077527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren.
    Saenen ND; Provost EB; Viaene MK; Vanpoucke C; Lefebvre W; Vrijens K; Roels HA; Nawrot TS
    Environ Int; 2016 Oct; 95():112-9. PubMed ID: 27575366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM; Taib RM; Hassim MH
    J Air Waste Manag Assoc; 2014 Aug; 64(8):867-78. PubMed ID: 25185389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concentrations of radionuclides of size fractionated fly-ash emissions from a thermal power plant using Taiwan coal.
    Weng YH; Chu TC
    J Radiat Res; 1992 Jun; 33(2):141-50. PubMed ID: 1404060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant.
    Izquierdo M; Font O; Moreno N; Querol X; Huggins FE; Alvarez E; Diez S; Otero P; Ballesteros JC; Gimenez A
    Environ Sci Technol; 2007 Aug; 41(15):5330-5. PubMed ID: 17822098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respiratory Health in Adults Residing Near a Coal-Burning Power Plant with Coal Ash Storage Facilities: A Cross-Sectional Epidemiological Study.
    Hagemeyer AN; Sears CG; Zierold KM
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.
    Hicks J; Yager J
    J Occup Environ Hyg; 2006 Aug; 3(8):448-55. PubMed ID: 16862716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of free calcium oxide content of fly ash on dust and sulfur dioxide emissions in a lignite-fired power plant.
    Sotiropoulos D; Georgakopoulos A; Kolovos N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):1042-9. PubMed ID: 16111145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.