These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Macak JM; Tsuchiya H; Taveira L; Ghicov A; Schmuki P J Biomed Mater Res A; 2005 Dec; 75(4):928-33. PubMed ID: 16138327 [TBL] [Abstract][Full Text] [Related]
43. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet. Wang L; Zhao TT; Zhang Z; Li G J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333 [TBL] [Abstract][Full Text] [Related]
44. Formation of white oxide layer on Zr-14Nb alloy using thermal treatment. Yu M; Doi H; Tsutsumi Y; Chen P; Ashida M; Kasugai S; Hanawa T Dent Mater J; 2014; 33(4):490-8. PubMed ID: 24988885 [TBL] [Abstract][Full Text] [Related]
45. Titanium nanostructures for biomedical applications. Kulkarni M; Mazare A; Gongadze E; Perutkova Š; Kralj-Iglič V; Milošev I; Schmuki P; A Iglič ; Mozetič M Nanotechnology; 2015 Feb; 26(6):062002. PubMed ID: 25611515 [TBL] [Abstract][Full Text] [Related]
46. Crystallinity of TiO Dias-Netipanyj MF; Sopchenski L; Gradowski T; Elifio-Esposito S; Popat KC; Soares P J Mater Sci Mater Med; 2020 Oct; 31(11):94. PubMed ID: 33128627 [TBL] [Abstract][Full Text] [Related]
47. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Jirka I; Vandrovcová M; Frank O; Tolde Z; Plšek J; Luxbacher T; Bačáková L; Starý V Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1636-45. PubMed ID: 23827618 [TBL] [Abstract][Full Text] [Related]
48. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413 [TBL] [Abstract][Full Text] [Related]
49. Surface modification and bioactivity of anodic Ti6Al4V alloy. Saharudin KA; Sreekantan S; Abd Aziz SN; Hazan R; Lai CW; Mydin RB; Mat I J Nanosci Nanotechnol; 2013 Mar; 13(3):1696-705. PubMed ID: 23755576 [TBL] [Abstract][Full Text] [Related]
50. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys. Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889 [TBL] [Abstract][Full Text] [Related]
51. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique. Kim HJ; Jeong YH; Brantley WA; Choe HC J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827 [TBL] [Abstract][Full Text] [Related]
52. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium. Nemati SH; Hadjizadeh A AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103 [TBL] [Abstract][Full Text] [Related]
53. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Peng Z; Ni J; Zheng K; Shen Y; Wang X; He G; Jin S; Tang T Int J Nanomedicine; 2013; 8():3093-105. PubMed ID: 23983463 [TBL] [Abstract][Full Text] [Related]
54. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Liu X; Tian A; You J; Zhang H; Wu L; Bai X; Lei Z; Shi X; Xue X; Wang H Int J Nanomedicine; 2016; 11():5743-5755. PubMed ID: 27843315 [TBL] [Abstract][Full Text] [Related]
55. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457 [TBL] [Abstract][Full Text] [Related]
56. Proliferation of osteoblast precursor cells on the surface of TiO Fanton L; Loria F; Amores M; Pazos MR; Adán C; García-Muñoz RA; Marugán J Sci Rep; 2022 May; 12(1):7895. PubMed ID: 35551497 [TBL] [Abstract][Full Text] [Related]
57. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment. Seo SH; Uhm SH; Kwon JS; Choi EH; Kim KM; Kim KN J Nanosci Nanotechnol; 2015 Mar; 15(3):2501-7. PubMed ID: 26413696 [TBL] [Abstract][Full Text] [Related]
58. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Kazek-Kęsik A; Nosol A; Płonka J; Śmiga-Matuszowicz M; Gołda-Cępa M; Krok-Borkowicz M; Brzychczy-Włoch M; Pamuła E; Simka W Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():998-1008. PubMed ID: 30423788 [TBL] [Abstract][Full Text] [Related]
59. Phenomena of nanotube nucleation and growth on new ternary titanium alloys. Choe HC; Jeong YH; Brantley WA J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479 [TBL] [Abstract][Full Text] [Related]
60. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]