BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31917573)

  • 1. Foodomics Revealed the Effects of Extract Methods on the Composition and Nutrition of Peanut Oil.
    Jiang F; Yuan L; Shu N; Wang W; Liu Y; Xu YJ
    J Agric Food Chem; 2020 Jan; 68(4):1147-1156. PubMed ID: 31917573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction Technology Can Impose Influences on Peanut Oil Functional Quality: A Study to Investigate the Lipid Metabolism by Sprague-Dawley Rat Model.
    Wang W; Yang X; Ye Z; Li Y; Liu Y; Cao P
    J Food Sci; 2019 Apr; 84(4):911-919. PubMed ID: 30835849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil.
    Liu X; Jin Q; Liu Y; Huang J; Wang X; Mao W; Wang S
    J Food Sci; 2011 Apr; 76(3):C404-12. PubMed ID: 21535807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review.
    Akhtar S; Khalid N; Ahmed I; Shahzad A; Suleria HA
    Crit Rev Food Sci Nutr; 2014; 54(12):1562-75. PubMed ID: 24580558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peanut Oil Body Composition and Stability.
    Zhou LZ; Chen FS; Hao LH; Du Y; Liu C
    J Food Sci; 2019 Oct; 84(10):2812-2819. PubMed ID: 31546282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of phospholipids during aqueous extraction processing of peanut and effect of demulsification treatments on oil-phosphorus-content.
    Zhao Q; Li P; Wang M; Zhang W; Zhao W; Yang R
    Food Chem; 2020 Nov; 331():127367. PubMed ID: 32574946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some nutritional characteristics of kernel and oil of peanut (Arachis hypogaea L.).
    Ozcan MM
    J Oleo Sci; 2010; 59(1):1-5. PubMed ID: 20032593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil.
    Hu H; Liu H; Shi A; Liu L; Fauconnier ML; Wang Q
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30585177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of Peanut Oil Using Thermosonication: Modeling and Multiobjective Optimization of Process Parameters Using Box-Behnken Design.
    Ketenoglu O
    J Oleo Sci; 2020 Jun; 69(6):585-595. PubMed ID: 32404549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Storage and Roasting on the Quality Properties of Kernel and Oils of Raw and Roasted Peanuts.
    Juhaimi FA; Ghafoor K; Babiker EE; Özcan MM; Aadiamo OQ; Alsawmahi ON
    J Oleo Sci; 2018; 67(6):755-762. PubMed ID: 29863092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mechanism of Extraction of Peanut Protein and Oil Bodies by Enzymatic Hydrolysis of the Cell Wall.
    Liu C; Hao LH; Chen FS; Zhu TW
    J Oleo Sci; 2020 Nov; 69(11):1467-1479. PubMed ID: 33055446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Physiochemical Factors and Peanut Varieties on the Charge Stability of Oil Bodies Extracted by Aqueous Method.
    Zhao Z; Chen F; Hao L
    J Oleo Sci; 2019 Apr; 68(4):297-306. PubMed ID: 30867389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Final report on the safety assessment of Peanut (Arachis hypogaea) Oil, Hydrogenated Peanut Oil, Peanut Acid, Peanut Glycerides, and Peanut (Arachis hypogaea) Flour.
    Int J Toxicol; 2001; 20 Suppl 2():65-77. PubMed ID: 11558642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Drying Methods on Peanut Quality during Storage.
    Qu C; Li Z; Yang Q; Wang X; Wang D
    J Oleo Sci; 2022 Jan; 71(1):57-66. PubMed ID: 34880148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Extraction Methods on the Bioactivities and Nutritional Value of Virginia and Valencia-Type Peanut Oil.
    Idrissi ZLE; El Moudden H; Mghazli N; Bouyahya A; Guezzane CE; Alshahrani MM; Al Awadh AA; Goh KW; Ming LC; Harhar H; Tabyaoui M
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain phospholipids as dietary source of (n-3) polyunsaturated fatty acids for nervous tissue in the rat.
    Bourre JM; Dumont O; Durand G
    J Neurochem; 1993 Jun; 60(6):2018-28. PubMed ID: 8492115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation.
    Wang Y; Zhu M; Mei J; Luo S; Leng T; Chen Y; Nie S; Xie M
    J Food Sci; 2019 Jul; 84(7):1966-1978. PubMed ID: 31206695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of Alcalase 2.4 L and CaCl
    Zhou L; Chen F; Liu K; Zhu T; Jiang L
    J Food Sci; 2020 Jun; 85(6):1772-1780. PubMed ID: 32484970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty Acid Profiles of Various Vegetable Oils and the Association between the Use of Palm Oil vs. Peanut Oil and Risk Factors for Non-Communicable Diseases in Yangon Region, Myanmar.
    Aung WP; Bjertness E; Htet AS; Stigum H; Chongsuvivatwong V; Soe PP; Kjøllesdal MKR
    Nutrients; 2018 Sep; 10(9):. PubMed ID: 30200403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of Seed Weight, Fatty Acid Composition, and Oil and Protein Contents from Different Peanut FAD2 Genotypes at Different Seed Developmental and Maturation Stages.
    Wang ML; Chen CY; Tonnis B; Pinnow D; Davis J; An YC; Dang P
    J Agric Food Chem; 2018 Apr; 66(14):3658-3665. PubMed ID: 29558122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.