BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31917573)

  • 41. Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC-MS/MS.
    Zhao X; Ma F; Li P; Li G; Zhang L; Zhang Q; Zhang W; Wang X
    Food Chem; 2015 Jun; 176():465-71. PubMed ID: 25624257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lectin may contribute to the atherogenicity of peanut oil.
    Kritchevsky D; Tepper SA; Klurfeld DM
    Lipids; 1998 Aug; 33(8):821-3. PubMed ID: 9727614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peanut roots as a source of resveratrol.
    Chen RS; Wu PL; Chiou RY
    J Agric Food Chem; 2002 Mar; 50(6):1665-7. PubMed ID: 11879054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Papain on the Demulsification of Peanut Oil Body Emulsion and the Corresponding Mechanism.
    Niu RH; Chen FS; Zhao ZT; Xin Y; Duan XJ; Wang BY
    J Oleo Sci; 2020 Jun; 69(6):617-625. PubMed ID: 32404547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of roasting and storage on proteins and oil in peanut kernels.
    Damame SV; Chavan JK; Kadam SS
    Plant Foods Hum Nutr; 1990 Apr; 40(2):143-8. PubMed ID: 2385575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dark chocolate with a high oleic peanut oil microcapsule content.
    Agibert SA; Lannes SCDS
    J Sci Food Agric; 2018 Dec; 98(15):5591-5597. PubMed ID: 29696663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heart pathology in rats fed partially hydrogenated fish oil, rapeseed oil or peanut oil for 30 weeks.
    Svaar H; Langmark FT
    Acta Pathol Microbiol Scand A; 1980 May; 88(3):179-87. PubMed ID: 7386210
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of dietary fats on nucleoside triphosphatase activity and nuclear membrane fatty acid composition of rats during development.
    Ammouche A; Youyou Y; Durand G; Bourre JM
    Ann Nutr Metab; 1994; 38(3):132-40. PubMed ID: 7979166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contribution of lipid to the formation of characteristic volatile flavor of peanut oil.
    Ma Y; Zhang K; Xu C; Lai C; Liu Y; Cao Y; Zhao L
    Food Chem; 2024 Jun; 442():138496. PubMed ID: 38262280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-detectable levels of trans-fatty acids in peanut butter.
    Sanders TH
    J Agric Food Chem; 2001 May; 49(5):2349-51. PubMed ID: 11368602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oil migration in 2-component confectionery systems.
    Lee WL; McCarthy MJ; McCarthy KL
    J Food Sci; 2010; 75(1):E83-9. PubMed ID: 20492171
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil.
    Blom WM; Kruizinga AG; Rubingh CM; Remington BC; Crevel RWR; Houben GF
    Food Chem Toxicol; 2017 Aug; 106(Pt A):306-313. PubMed ID: 28578104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oil migration in chocolate-peanut butter paste confectionery as a function of chocolate formulation.
    McCarthy KL; McCarthy MJ
    J Food Sci; 2008 Aug; 73(6):E266-73. PubMed ID: 19241547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cold-pressed and hot-pressed rapeseed oil: The effects of roasting and seed moisture on the antioxi- dant activity, canolol, and tocopherol level.
    Siger A; Józefiak M; Górnaś P
    Acta Sci Pol Technol Aliment; 2017; 16(1):69-81. PubMed ID: 28362474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market.
    Cicero N; Albergamo A; Salvo A; Bua GD; Bartolomeo G; Mangano V; Rotondo A; Di Stefano V; Di Bella G; Dugo G
    Food Res Int; 2018 Jul; 109():517-525. PubMed ID: 29803478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of proteic allergens in refined peanut oil.
    Olszewski A; Pons L; Moutété F; Aimone-Gastin I; Kanny G; Moneret-Vautrin DA; Guéant JL
    Clin Exp Allergy; 1998 Jul; 28(7):850-9. PubMed ID: 9720819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Action of phytosterols on thermally induced trans fatty acids in peanut oil.
    Guo Q; Li T; Qu Y; Wang X; Liu L; Liu H; Wang Q
    Food Chem; 2021 May; 344():128637. PubMed ID: 33229150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tracking Changes of Hexabromocyclododecanes during the Refining Process in Peanut, Corn, and Soybean Oils.
    Zhang P; Li C; Jin F; Su H; Shao H; Jin M; Wang S; She Y; Zheng L; Wang J; Yuan Y
    J Agric Food Chem; 2017 Nov; 65(45):9880-9886. PubMed ID: 29058427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic consumption of fructose in combination with trans fatty acids but not with saturated fatty acids induces nonalcoholic steatohepatitis with fibrosis in rats.
    Jeyapal S; Putcha UK; Mullapudi VS; Ghosh S; Sakamuri A; Kona SR; Vadakattu SS; Madakasira C; Ibrahim A
    Eur J Nutr; 2018 Sep; 57(6):2171-2187. PubMed ID: 28676973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.).
    Tang Y; Huang J; Ji H; Pan L; Hu C; Qiu X; Zhu H; Sui J; Wang J; Qiao L
    Plant Sci; 2022 Jun; 319():111247. PubMed ID: 35487656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.