These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31917583)

  • 1. The Impact of the Metal Interface on the Stability and Quality of a Therapeutic Fusion Protein.
    Defante AP; Kalonia CK; Keegan E; Bishop SM; Satish HA; Hudson SD; Santacroce PV
    Mol Pharm; 2020 Feb; 17(2):569-578. PubMed ID: 31917583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.
    Kalonia CK; Heinrich F; Curtis JE; Raman S; Miller MA; Hudson SD
    Mol Pharm; 2018 Mar; 15(3):1319-1331. PubMed ID: 29425047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Neutron Reflectometry to Discern the Structure of Fibrinogen Adsorption at the Stainless Steel/Aqueous Interface.
    Wood MH; Browning KL; Barker RD; Clarke SM
    J Phys Chem B; 2016 Jun; 120(24):5405-16. PubMed ID: 27244444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorbed protein film on pump surfaces leads to particle formation during fill-finish manufacturing.
    Roffi K; Li L; Pantazis J
    Biotechnol Bioeng; 2021 Aug; 118(8):2947-2957. PubMed ID: 33913509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Effect of Cavitation and Agitation on Protein Aggregation.
    Torisu T; Maruno T; Hamaji Y; Ohkubo T; Uchiyama S
    J Pharm Sci; 2017 Feb; 106(2):521-529. PubMed ID: 27887723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine Serum Albumin and Fibrinogen Adsorption at the 316L Stainless Steel/Aqueous Interface.
    Wood MH; Payagalage CG; Geue T
    J Phys Chem B; 2018 May; 122(19):5057-5065. PubMed ID: 29709171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of adsorption behaviors of bovine serum albumin onto a stainless steel surface by the quartz crystal microbalance based on admittance analysis.
    Hagiwara T; Nattawut P; Shibata M; Sakiyama T
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):783-789. PubMed ID: 28110631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein adsorption, desorption, and aggregation mediated by solid-liquid interfaces.
    Perevozchikova T; Nanda H; Nesta DP; Roberts CJ
    J Pharm Sci; 2015 Jun; 104(6):1946-1959. PubMed ID: 25846460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of stirring material on formation of submicron and subvisible aggregates in mAbs by quantitative laser diffraction, dynamic light scattering and background membrane imaging.
    Tathe U; Khopkar S; Rasam P; Kancherla A; Dandekar P; Jain R
    Int J Pharm; 2024 Jul; 660():124321. PubMed ID: 38857661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption Analysis of Lactoferrin to Titanium, Stainless Steel, Zirconia, and Polymethyl Methacrylate Using the Quartz Crystal Microbalance Method.
    Yoshida E; Hayakawa T
    Biomed Res Int; 2016; 2016():3961286. PubMed ID: 26998486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation of a monoclonal antibody induced by adsorption to stainless steel.
    Bee JS; Davis M; Freund E; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 2010 Jan; 105(1):121-9. PubMed ID: 19725039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Changes in Adsorbed Cytochrome c upon Applied Potential Characterized by Neutron Reflectometry.
    Wood MH; Humphreys EK; Welbourn RJL
    Langmuir; 2019 May; 35(18):6055-6063. PubMed ID: 30966748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A frictional study of total hip joint replacements.
    Scholes SC; Unsworth A; Goldsmith AA
    Phys Med Biol; 2000 Dec; 45(12):3721-35. PubMed ID: 11131195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies.
    Bee JS; Chiu D; Sawicki S; Stevenson JL; Chatterjee K; Freund E; Carpenter JF; Randolph TW
    J Pharm Sci; 2009 Sep; 98(9):3218-38. PubMed ID: 19492408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical marginal discrepancy of ceramic copings with different ceramic materials, finish lines, and luting agents: an in vitro evaluation.
    Quintas AF; Oliveira F; Bottino MA
    J Prosthet Dent; 2004 Sep; 92(3):250-7. PubMed ID: 15343160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and protein-induced metal release from chromium metal and stainless steel.
    Lundin M; Hedberg Y; Jiang T; Herting G; Wang X; Thormann E; Blomberg E; Wallinder IO
    J Colloid Interface Sci; 2012 Jan; 366(1):155-164. PubMed ID: 22014396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles.
    Tyagi AK; Randolph TW; Dong A; Maloney KM; Hitscherich C; Carpenter JF
    J Pharm Sci; 2009 Jan; 98(1):94-104. PubMed ID: 18454482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.