These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31917825)

  • 21. Distinct states of methionyl-tRNA synthetase indicate inhibitor binding by conformational selection.
    Koh CY; Kim JE; Shibata S; Ranade RM; Yu M; Liu J; Gillespie JR; Buckner FS; Verlinde CL; Fan E; Hol WG
    Structure; 2012 Oct; 20(10):1681-91. PubMed ID: 22902861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton.
    Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S
    Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methionyl-tRNA synthetase.
    Deniziak MA; Barciszewski J
    Acta Biochim Pol; 2001; 48(2):337-50. PubMed ID: 11732605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Nucleic Acids Res; 1995 Dec; 23(23):4793-8. PubMed ID: 8532520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Insight into Substrate-Induced Conformational Changes in Methionyl-tRNA Synthetase of Mycobacterium Tuberculosis.
    Thakur S; Mehra R
    Protein J; 2023 Oct; 42(5):533-546. PubMed ID: 37402109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis.
    Shepard A; Shiba K; Schimmel P
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9964-8. PubMed ID: 1329109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The synthetic/editing active site of an aminoacyl-tRNA synthetase: evidence for binding of thiols in the editing subsite.
    Jakubowski H
    Biochemistry; 1996 Jun; 35(25):8252-9. PubMed ID: 8679580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General structure/function properties of microbial methionyl-tRNA synthetases.
    Schmitt E; Panvert M; Mechulam Y; Blanquet S
    Eur J Biochem; 1997 Jun; 246(2):539-47. PubMed ID: 9208948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational design of protein-ligand binding: modifying the specificity of asparaginyl-tRNA synthetase.
    Lopes A; Schmidt Am Busch M; Simonson T
    J Comput Chem; 2010 Apr; 31(6):1273-86. PubMed ID: 19862811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methionyl adenylate analogues as inhibitors of methionyl-tRNA synthetase.
    Lee J; Kang SU; Kang MK; Chun MW; Jo YJ; Kwak JH; Kim S
    Bioorg Med Chem Lett; 1999 May; 9(10):1365-70. PubMed ID: 10360737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases.
    Nadarajan SP; Mathew S; Deepankumar K; Yun H
    J Mol Graph Model; 2013 Feb; 39():79-86. PubMed ID: 23228618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-selective metabolic labeling of proteins.
    Ngo JT; Champion JA; Mahdavi A; Tanrikulu IC; Beatty KE; Connor RE; Yoo TH; Dieterich DC; Schuman EM; Tirrell DA
    Nat Chem Biol; 2009 Oct; 5(10):715-7. PubMed ID: 19668194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing interactions of aminoacyl-adenylate with
    Volynets GP; Gudzera OI; Usenko MO; Gorbatiuk OB; Yarmoluk SM; Tukalo MA
    J Biomol Struct Dyn; 2023; 41(13):6450-6458. PubMed ID: 35930324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization of Mycobacterium smegmatis methionyl-tRNA synthetase in the presence of methionine and adenosine.
    Ingvarsson H; Jones TA; Unge T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):618-20. PubMed ID: 19478446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase.
    Hountondji C; Lazennec C; Beauvallet C; Dessen P; Pernollet JC; Plateau P; Blanquet S
    Biochemistry; 2002 Dec; 41(50):14856-65. PubMed ID: 12475234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.