These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31917892)

  • 21. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5.
    Ding K; Zhong Z; Wang J; Zhang B; Fan L; Liu S; Wang Y; Liu Y; Zhong D; Chen P; Ruan R
    Bioresour Technol; 2018 Aug; 261():86-92. PubMed ID: 29654998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis of polyethylene mixed with paper and wood: Interaction effects on tar, char and gas yields.
    Grieco EM; Baldi G
    Waste Manag; 2012 May; 32(5):833-9. PubMed ID: 22230659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.
    Narobe M; Golob J; Klinar D; Francetič V; Likozar B
    Bioresour Technol; 2014 Jun; 162():21-9. PubMed ID: 24736208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of hazardous plastic wastes into useful chemical products.
    Siddiqui MN
    J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure.
    Zhang Y; Chen X; Cheng L; Gu J; Xu Y
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a lumped approach for solid plastic waste gasification: Polyethylene and polypropylene pyrolysis.
    Locaspi A; Pelucchi M; Mehl M; Faravelli T
    Waste Manag; 2023 Feb; 156():107-117. PubMed ID: 36462341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy.
    Brems A; Baeyens J; Vandecasteele C; Dewil R
    J Air Waste Manag Assoc; 2011 Jul; 61(7):721-31. PubMed ID: 21850826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.
    Chen W; Shi S; Chen M; Zhou X
    Waste Manag; 2017 Sep; 67():155-162. PubMed ID: 28559104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins.
    Rotliwala YC; Parikh PA
    Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.
    Lee KH; Shin DH
    Waste Manag; 2007; 27(2):168-76. PubMed ID: 16513339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of C
    Xu J; Tian X; Huang W; Ke L; Fan L; Zhang Q; Cui X; Wu Q; Zeng Y; Cobb K; Liu Y; Ruan R; Wang Y
    Sci Total Environ; 2023 Nov; 899():165597. PubMed ID: 37467986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Product distribution modelling in the thermal pyrolysis of high density polyethylene.
    Elordi G; Lopez G; Olazar M; Aguado R; Bilbao J
    J Hazard Mater; 2007 Jun; 144(3):708-14. PubMed ID: 17337118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products.
    Ghorbannezhad P; Park S; Onwudili JA
    Waste Manag; 2020 Feb; 102():909-918. PubMed ID: 31841983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrolysis for Nylon 6 Monomer Recovery from Teabag Waste.
    Kim S; Lee N; Lee J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst.
    Gaurh P; Pramanik H
    Waste Manag; 2018 Jul; 77():114-130. PubMed ID: 30008401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyro-gas analysis of fixed bed reactor end of life tyres (ELTs) pyrolysis: A comparative study.
    Al-Salem SM; Karam HJ; Al-Qassimi MM
    J Environ Manage; 2022 Oct; 320():115852. PubMed ID: 36056486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A; Torres A
    Waste Manag; 2011; 31(9-10):1973-83. PubMed ID: 21689920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolysis of long chain hydrocarbon-based plastics via self-exothermic effects: The origin and influential factors of exothermic processes.
    Cheng L; Zhang Y; Wang Y; Gu J; Yuan H; Chen Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127476. PubMed ID: 34736180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.