These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
504 related articles for article (PubMed ID: 31918065)
1. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
2. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. Salem M; Cabezas M; Valverde S; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2018; 17():607-615. PubMed ID: 29234597 [TBL] [Abstract][Full Text] [Related]
3. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
4. Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach. Salem M; Ryan MA; Oliver A; Hussain KF; Lladó X Front Neurosci; 2022; 16():1007619. PubMed ID: 36507318 [TBL] [Abstract][Full Text] [Related]
5. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096 [TBL] [Abstract][Full Text] [Related]
6. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images. Sarica B; Seker DZ; Bayram B Int J Med Inform; 2023 Feb; 170():104965. PubMed ID: 36580821 [TBL] [Abstract][Full Text] [Related]
7. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Essa E; Aldesouky D; Hussein SE; Rashad MZ Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214 [TBL] [Abstract][Full Text] [Related]
8. Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Gabr RE; Coronado I; Robinson M; Sujit SJ; Datta S; Sun X; Allen WJ; Lublin FD; Wolinsky JS; Narayana PA Mult Scler; 2020 Sep; 26(10):1217-1226. PubMed ID: 31190607 [TBL] [Abstract][Full Text] [Related]
9. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826 [TBL] [Abstract][Full Text] [Related]
10. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging. Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943 [TBL] [Abstract][Full Text] [Related]
11. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
13. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials. Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871 [TBL] [Abstract][Full Text] [Related]
14. Sensitive Detection of Infratentorial and Upper Cervical Cord Lesions in Multiple Sclerosis with Combined 3D FLAIR and T2-Weighted (FLAIR3) Imaging. Gabr RE; Lincoln JA; Kamali A; Arevalo O; Zhang X; Sun X; Hasan KM; Narayana PA AJNR Am J Neuroradiol; 2020 Nov; 41(11):2062-2067. PubMed ID: 33033051 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Narayana PA; Coronado I; Sujit SJ; Wolinsky JS; Lublin FD; Gabr RE Radiology; 2020 Feb; 294(2):398-404. PubMed ID: 31845845 [TBL] [Abstract][Full Text] [Related]
16. Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI. Hashemi M; Akhbari M; Jutten C Comput Biol Med; 2022 Jun; 145():105402. PubMed ID: 35344864 [TBL] [Abstract][Full Text] [Related]
17. Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. McKinley R; Wepfer R; Grunder L; Aschwanden F; Fischer T; Friedli C; Muri R; Rummel C; Verma R; Weisstanner C; Wiestler B; Berger C; Eichinger P; Muhlau M; Reyes M; Salmen A; Chan A; Wiest R; Wagner F Neuroimage Clin; 2020; 25():102104. PubMed ID: 31927500 [TBL] [Abstract][Full Text] [Related]
18. Improved Detection of New MS Lesions during Follow-Up Using an Automated MR Coregistration-Fusion Method. Galletto Pregliasco A; Collin A; Guéguen A; Metten MA; Aboab J; Deschamps R; Gout O; Duron L; Sadik JC; Savatovsky J; Lecler A AJNR Am J Neuroradiol; 2018 Jul; 39(7):1226-1232. PubMed ID: 29880479 [TBL] [Abstract][Full Text] [Related]
19. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps. Zhang H; Nguyen TD; Zhang J; Marcille M; Spincemaille P; Wang Y; Gauthier SA; Sweeney EM Neuroimage Clin; 2022; 34():102979. PubMed ID: 35247730 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. Gaj S; Ontaneda D; Nakamura K PLoS One; 2021; 16(9):e0255939. PubMed ID: 34469432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]