BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 31918084)

  • 21. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.
    Nair V; Vinu R
    Bioresour Technol; 2016 Sep; 216():511-9. PubMed ID: 27268436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic studies on the effect of structural modification of orange peel for remediation of phenol contaminated water.
    Kumar L; Yadav V; Yadav M; Saini N; Jagannathan K; Murugesan V; Ezhilselvi V
    Water Environ Res; 2023 May; 95(5):e10872. PubMed ID: 37113106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing mesoporous biochar derived from waste carton: Improving multi-site adsorption of dye wastewater and investigating mechanism.
    Wang YS; Huo TR; Wang Y; Bai JW; Huang PP; Li C; Deng SY; Mei H; Qian J; Zhang XC; Ding C; Zhang QY; Wang WK
    Environ Res; 2024 Feb; 242():117775. PubMed ID: 38029815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu
    Choudhary M; Kumar R; Neogi S
    J Hazard Mater; 2020 Jun; 392():122441. PubMed ID: 32193109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite.
    Molavi H; Neshastehgar M; Shojaei A; Ghashghaeinejad H
    Chemosphere; 2020 May; 247():125882. PubMed ID: 32069713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on the sustainable efficacy of g-MoS
    Zeng Z; Ye S; Wu H; Xiao R; Zeng G; Liang J; Zhang C; Yu J; Fang Y; Song B
    Sci Total Environ; 2019 Jan; 648():206-217. PubMed ID: 30118936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal.
    Dai L; Zhu W; He L; Tan F; Zhu N; Zhou Q; He M; Hu G
    Bioresour Technol; 2018 Nov; 267():510-516. PubMed ID: 30048926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions.
    Li B; Zhang Y; Xu J; Mei Y; Fan S; Xu H
    Chemosphere; 2021 Mar; 267():129283. PubMed ID: 33338711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters.
    Tsai CY; Lin PY; Hsieh SL; Kirankumar R; Patel AK; Singhania RR; Dong CD; Chen CW; Hsieh S
    Bioresour Technol; 2022 Mar; 347():126749. PubMed ID: 35066130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decolourization of malachite green dye by mentha plant biochar (MPB): a combined action of adsorption and electrochemical reduction processes.
    Rawat AP; Singh DP
    Water Sci Technol; 2018 Mar; 77(5-6):1734-1743. PubMed ID: 29595176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.
    Ferrarini F; Bonetto LR; Crespo JS; Giovanela M
    Water Sci Technol; 2016; 73(9):2132-42. PubMed ID: 27148714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of malachite green by magnetic litchi pericarps: A response surface methodology investigation.
    Zheng H; Qi J; Jiang R; Gao Y; Li X
    J Environ Manage; 2015 Oct; 162():232-9. PubMed ID: 26254991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization.
    Tang Y; Zhao J; Zhang Y; Zhou J; Shi B
    Chemosphere; 2021 Jan; 263():127987. PubMed ID: 32835980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment.
    Zhang H; Xue G; Chen H; Li X
    Chemosphere; 2018 Jan; 191():64-71. PubMed ID: 29031054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling.
    Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T
    Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Adsorption of Methylene Blue by Porous Biochar Derived from Soybean Dreg Using a One-Pot Synthesis Method.
    Ying Z; Chen X; Li H; Liu X; Zhang C; Zhang J; Yi G
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33513953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye.
    Lawal IA; Klink M; Ndungu P
    Environ Res; 2019 Dec; 179(Pt B):108837. PubMed ID: 31678732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl
    Nguyen TB; Truong QM; Chen CW; Doong RA; Chen WH; Dong CD
    Bioresour Technol; 2022 Feb; 346():126351. PubMed ID: 34798257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-factorial investigation of the effect of biochar of the secondary medicinal residue of snow lotus on the adsorption of two azo dyes, methyl red and methyl orange.
    Zhang S; Yao Y; Li J; Wang L; Wang X; Tian S
    Microsc Res Tech; 2023 Nov; 86(11):1416-1442. PubMed ID: 37177906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential.
    Hao M; Wu W; Habibul N; Chai G; Ma X; Ma X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70827-70841. PubMed ID: 37155106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.