These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31918104)

  • 1. A comprehensive review of mathematical models developed for the estimation of organic disinfection byproducts.
    Ike IA; Karanfil T; Ray SK; Hur J
    Chemosphere; 2020 May; 246():125797. PubMed ID: 31918104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disinfection byproducts and their cytotoxicity contribution from dissolved black carbon in source water during chlor(am)ination.
    Chen H; Chen C; Zhao X; Wang J; Wang Y; Xian Q
    Sci Total Environ; 2024 Jun; 930():172834. PubMed ID: 38688374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water.
    Zhu X; Zhang X
    Water Res; 2016 Jun; 96():166-76. PubMed ID: 27038586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation, speciation and toxicity of CX
    Luo X; Zhu S; Wang J; Sun J; Bu L; Zhou S
    Ecotoxicol Environ Saf; 2020 Mar; 191():110247. PubMed ID: 32004943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review.
    Dong F; Lin Q; Li C; He G; Deng Y
    Sci Total Environ; 2021 Feb; 754():141955. PubMed ID: 32920386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of organic chloramines during chlor(am)ination and UV/chlor(am)ination of algae organic matter in drinking water.
    Zhang TY; Lin YL; Xu B; Cheng T; Xia SJ; Chu WH; Gao NY
    Water Res; 2016 Oct; 103():189-196. PubMed ID: 27455415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trihalomethane yields from twelve aromatic halogenated disinfection byproducts during chlor(am)ination.
    Hu S; Gong T; Wang J; Xian Q
    Chemosphere; 2019 Aug; 228():668-675. PubMed ID: 31071557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs.
    Han J; Zhai H; Zhang X; Liu J; Sharma VK
    Water Res; 2024 Feb; 250():121039. PubMed ID: 38142503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation kinetics, byproducts formation and estimated toxicity of metronidazole (MNZ) during chlor(am)ination.
    Zhang S; Lin T; Chen W; Xu H; Tao H
    Chemosphere; 2019 Nov; 235():21-31. PubMed ID: 31254778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and disinfection byproducts formation potential of dissolved organic matter released from fast-growing Eucalyptus urophylla leaves.
    Liu L; Tang Y; Yang W; Li W; Fang B; Zhong Y; Yin M; Chen Y; Yang H
    Chemosphere; 2020 Jun; 248():126017. PubMed ID: 32035383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].
    Zhang MS; Xu B; Zhang TY; Cheng T; Xia SJ; Chu WH
    Huan Jing Ke Xue; 2015 Sep; 36(9):3278-84. PubMed ID: 26717688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk.
    Huang R; Liu Z; Yan B; Zhang J; Liu D; Xu Y; Wang P; Cui F; Liu Z
    Environ Pollut; 2019 Feb; 245():63-70. PubMed ID: 30414550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation.
    He J; Wang F; Zhao T; Liu S; Chu W
    Water Res; 2020 Mar; 171():115368. PubMed ID: 31841956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of disinfection byproduct precursors and reduction in additive toxicity of chlorinated and chloraminated waters by ozonation and up-flow biological activated carbon process.
    Chen H; Lin T; Chen W; Tao H; Xu H
    Chemosphere; 2019 Feb; 216():624-632. PubMed ID: 30391883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.
    Li WT; Jin J; Li Q; Wu CF; Lu H; Zhou Q; Li AM
    Water Res; 2016 Apr; 93():1-9. PubMed ID: 26874469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking and analysis of DBP precursors' properties by fluorescence spectrometry of dissolved organic matter.
    Fan Z; Yang H; Li S; Yu X
    Chemosphere; 2020 Jan; 239():124790. PubMed ID: 31521927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlor(am)ination of iopamidol: Kinetics, pathways and disinfection by-products formation.
    Tian FX; Xu B; Lin YL; Hu CY; Zhang TY; Xia SJ; Chu WH; Gao NY
    Chemosphere; 2017 Oct; 184():489-497. PubMed ID: 28618281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.