BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31918113)

  • 1. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium.
    Salehi N; Azhdarpoor A; Shirdarreh M
    Chemosphere; 2020 May; 246():125845. PubMed ID: 31918113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils.
    Rostami S; Azhdarpoor A; Rostami M; Samaei MR
    Chemosphere; 2016 Oct; 161():219-223. PubMed ID: 27434251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils.
    Wang Q; Liu X; Zhang X; Hou Y; Hu X; Liang X; Chen X
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5705-11. PubMed ID: 26581690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).
    Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A
    Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.
    Steliga T; Kluk D
    Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community.
    Chen C; Wang X; Wang J
    Chemosphere; 2019 Nov; 235():985-994. PubMed ID: 31561315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil.
    Jiao A; Gao B; Gao M; Liu X; Zhang X; Wang C; Fan D; Han Z; Hu Z
    Chemosphere; 2022 May; 294():133654. PubMed ID: 35066084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.).
    Liu X; Shen S; Zhang X; Chen X; Jin R; Li X
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41639-41646. PubMed ID: 32691318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application.
    Chen T; Liu X; Zhang X; Hu X; Cao L
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19194-19200. PubMed ID: 28664493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of sewage sludge and use of its leachate for crop production.
    Xu T; Xie F; Wei Z; Zeng S; Wu QT
    Environ Technol; 2015; 36(23):3000-7. PubMed ID: 25205245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of lead and cadmium-contaminated soils.
    Salama AK; Osman KA; Gouda NA
    Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.
    Jia W; Lv S; Feng J; Li J; Li Y; Li S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18823-31. PubMed ID: 27318481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead.
    Jerez Ch JA; Romero RM
    Int J Phytoremediation; 2016 Nov; 18(11):1122-7. PubMed ID: 27196815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of heavy metal availability prior to an in situ soil phytoremediation program.
    García G; Zanuzzi AL; Faz A
    Biodegradation; 2005 Mar; 16(2):187-94. PubMed ID: 15730029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil.
    Chigbo C; Batty L; Bartlett R
    Chemosphere; 2013 Mar; 90(10):2542-8. PubMed ID: 23237298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation factor of heavy metals by elephant grass grown with varying concentrations of landfill leachate.
    de Oliveira Mesquita F; Pedrosa TD; Batista RO; de Andrade EM
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43831-43841. PubMed ID: 33837943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pyrene and cadmium on microbial activity and community structure in soil.
    Lu M; Xu K; Chen J
    Chemosphere; 2013 Apr; 91(4):491-7. PubMed ID: 23290945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.
    Phieler R; Merten D; Roth M; Büchel G; Kothe E
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19408-16. PubMed ID: 25874434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.
    Ali A; Guo D; Mahar A; Wang P; Ma F; Shen F; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2017 May; 139():202-209. PubMed ID: 28135667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.