These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31918113)
1. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium. Salehi N; Azhdarpoor A; Shirdarreh M Chemosphere; 2020 May; 246():125845. PubMed ID: 31918113 [TBL] [Abstract][Full Text] [Related]
2. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Rostami S; Azhdarpoor A; Rostami M; Samaei MR Chemosphere; 2016 Oct; 161():219-223. PubMed ID: 27434251 [TBL] [Abstract][Full Text] [Related]
3. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Wang Q; Liu X; Zhang X; Hou Y; Hu X; Liang X; Chen X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5705-11. PubMed ID: 26581690 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J; Panwar R Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928 [TBL] [Abstract][Full Text] [Related]
6. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
7. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community. Chen C; Wang X; Wang J Chemosphere; 2019 Nov; 235():985-994. PubMed ID: 31561315 [TBL] [Abstract][Full Text] [Related]
9. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. Jiao A; Gao B; Gao M; Liu X; Zhang X; Wang C; Fan D; Han Z; Hu Z Chemosphere; 2022 May; 294():133654. PubMed ID: 35066084 [TBL] [Abstract][Full Text] [Related]
10. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass (Sorghum sudanense (Piper) Stapf.). Liu X; Shen S; Zhang X; Chen X; Jin R; Li X Environ Sci Pollut Res Int; 2020 Nov; 27(33):41639-41646. PubMed ID: 32691318 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application. Chen T; Liu X; Zhang X; Hu X; Cao L Environ Sci Pollut Res Int; 2017 Aug; 24(23):19194-19200. PubMed ID: 28664493 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of sewage sludge and use of its leachate for crop production. Xu T; Xie F; Wei Z; Zeng S; Wu QT Environ Technol; 2015; 36(23):3000-7. PubMed ID: 25205245 [TBL] [Abstract][Full Text] [Related]
13. Remediation of lead and cadmium-contaminated soils. Salama AK; Osman KA; Gouda NA Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [TBL] [Abstract][Full Text] [Related]
14. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. Jia W; Lv S; Feng J; Li J; Li Y; Li S Environ Sci Pollut Res Int; 2016 Sep; 23(18):18823-31. PubMed ID: 27318481 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead. Jerez Ch JA; Romero RM Int J Phytoremediation; 2016 Nov; 18(11):1122-7. PubMed ID: 27196815 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. García G; Zanuzzi AL; Faz A Biodegradation; 2005 Mar; 16(2):187-94. PubMed ID: 15730029 [TBL] [Abstract][Full Text] [Related]
17. Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil. Chigbo C; Batty L; Bartlett R Chemosphere; 2013 Mar; 90(10):2542-8. PubMed ID: 23237298 [TBL] [Abstract][Full Text] [Related]
18. Translocation factor of heavy metals by elephant grass grown with varying concentrations of landfill leachate. de Oliveira Mesquita F; Pedrosa TD; Batista RO; de Andrade EM Environ Sci Pollut Res Int; 2021 Aug; 28(32):43831-43841. PubMed ID: 33837943 [TBL] [Abstract][Full Text] [Related]
19. Effect of pyrene and cadmium on microbial activity and community structure in soil. Lu M; Xu K; Chen J Chemosphere; 2013 Apr; 91(4):491-7. PubMed ID: 23290945 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor. Phieler R; Merten D; Roth M; Büchel G; Kothe E Environ Sci Pollut Res Int; 2015 Dec; 22(24):19408-16. PubMed ID: 25874434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]