These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31918293)
1. Assessing thermal behaviours of cellulose and poly(methyl methacrylate) during co-pyrolysis based on an unified thermoanalytical study. Özsin G Bioresour Technol; 2020 Mar; 300():122700. PubMed ID: 31918293 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis. Chen R; Xu M Waste Manag; 2020 Jul; 113():51-61. PubMed ID: 32505975 [TBL] [Abstract][Full Text] [Related]
3. Depolymerization of waste poly(methyl methacrylate) scraps and purification of depolymerized products. Godiya CB; Gabrielli S; Materazzi S; Pianesi MS; Stefanini N; Marcantoni E J Environ Manage; 2019 Feb; 231():1012-1020. PubMed ID: 30602225 [TBL] [Abstract][Full Text] [Related]
4. Stabilizing poly(vinyl chloride) using its blends with poly(methyl methacarylate): pyrolysis GC/MS studies. Al-Sagheer F; Ahmad Z J Hazard Mater; 2014 Aug; 278():584-91. PubMed ID: 25019576 [TBL] [Abstract][Full Text] [Related]
5. Consistent modelling of material weight loss and gas release due to pyrolysis and conducting benchmark tests of the model-A case for glovebox panel materials such as polymethyl methacrylate. Ohno T; Tashiro S; Amano Y; Yoshida N; Yoshida R; Abe H PLoS One; 2021; 16(1):e0245303. PubMed ID: 33507991 [TBL] [Abstract][Full Text] [Related]
6. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion. Torres-García E; Ramírez-Verduzco LF; Aburto J Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937 [TBL] [Abstract][Full Text] [Related]
7. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis. Cai J; Yang S; Li T Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741 [TBL] [Abstract][Full Text] [Related]
8. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Mishra RK; Mohanty K Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770 [TBL] [Abstract][Full Text] [Related]
9. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Özsin G; Pütün AE Waste Manag; 2017 Jun; 64():315-326. PubMed ID: 28320623 [TBL] [Abstract][Full Text] [Related]
11. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Liu G; Song H; Wu J Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437 [TBL] [Abstract][Full Text] [Related]
12. Kinetic studies on the pyrolysis of pinewood. Mishra G; Kumar J; Bhaskar T Bioresour Technol; 2015 Apr; 182():282-288. PubMed ID: 25704102 [TBL] [Abstract][Full Text] [Related]
13. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes: Thermal behavior, gas formation, and kinetics. Chen R; Zhang J; Lun L; Li Q; Zhang Y Bioresour Technol; 2019 Nov; 292():121970. PubMed ID: 31421590 [TBL] [Abstract][Full Text] [Related]
14. Thermogravimetric pyrolysis kinetics study of tobacco stem via multicomponent kinetic modeling, Asym2sig deconvolution and combined kinetics. Ma C; Zhang F; Liu H; Wang H; Hu J Bioresour Technol; 2022 Sep; 360():127539. PubMed ID: 35777640 [TBL] [Abstract][Full Text] [Related]
15. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. He Q; Ding L; Gong Y; Li W; Wei J; Yu G Bioresour Technol; 2019 May; 280():104-111. PubMed ID: 30763862 [TBL] [Abstract][Full Text] [Related]
16. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Damartzis T; Vamvuka D; Sfakiotakis S; Zabaniotou A Bioresour Technol; 2011 May; 102(10):6230-8. PubMed ID: 21398116 [TBL] [Abstract][Full Text] [Related]
17. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455 [TBL] [Abstract][Full Text] [Related]
18. Auxiliary effect of CO Wang Z; Wang Z; Gong Z; Li X; Chu Z; Du L; Wu J; Jin Z J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):460-469. PubMed ID: 35603685 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the evolved pyrolytic products and energy potential of Bagasse: experimental, kinetic, thermodynamic and boosted regression trees analysis. Zhang Y; Raashid M; Shen X; Waqas Iqbal M; Ali I; Ahmad MS; Simakov DSA; Elkamel A; Shen B Bioresour Technol; 2024 Feb; 394():130295. PubMed ID: 38184085 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]