These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 31918370)
1. Comparison of radiomic features in diagnostic CT images with and without contrast enhancement in the delayed phase for NSCLC patients. Kakino R; Nakamura M; Mitsuyoshi T; Shintani T; Hirashima H; Matsuo Y; Mizowaki T Phys Med; 2020 Jan; 69():176-182. PubMed ID: 31918370 [TBL] [Abstract][Full Text] [Related]
2. Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT. Huynh E; Coroller TP; Narayan V; Agrawal V; Romano J; Franco I; Parmar C; Hou Y; Mak RH; Aerts HJ PLoS One; 2017; 12(1):e0169172. PubMed ID: 28046060 [TBL] [Abstract][Full Text] [Related]
4. Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Larue RTHM; van Timmeren JE; de Jong EEC; Feliciani G; Leijenaar RTH; Schreurs WMJ; Sosef MN; Raat FHPJ; van der Zande FHR; Das M; van Elmpt W; Lambin P Acta Oncol; 2017 Nov; 56(11):1544-1553. PubMed ID: 28885084 [TBL] [Abstract][Full Text] [Related]
5. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Sugai Y; Kadoya N; Tanaka S; Tanabe S; Umeda M; Yamamoto T; Takeda K; Dobashi S; Ohashi H; Takeda K; Jingu K Radiat Oncol; 2021 Apr; 16(1):80. PubMed ID: 33931085 [TBL] [Abstract][Full Text] [Related]
6. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876 [TBL] [Abstract][Full Text] [Related]
7. Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study. Kakino R; Nakamura M; Mitsuyoshi T; Shintani T; Kokubo M; Negoro Y; Fushiki M; Ogura M; Itasaka S; Yamauchi C; Otsu S; Sakamoto T; Sakamoto M; Araki N; Hirashima H; Adachi T; Matsuo Y; Mizowaki T Med Phys; 2020 Sep; 47(9):4634-4643. PubMed ID: 32645224 [TBL] [Abstract][Full Text] [Related]
8. Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR. Vuong D; Tanadini-Lang S; Huellner MW; Veit-Haibach P; Unkelbach J; Andratschke N; Kraft J; Guckenberger M; Bogowicz M Med Phys; 2019 Apr; 46(4):1677-1685. PubMed ID: 30714158 [TBL] [Abstract][Full Text] [Related]
9. Effects of simulated dose variation on contrast-enhanced CT-based radiomic analysis for Non-Small Cell Lung Cancer. Hepp T; Othman A; Liebgott A; Kim JH; Pfannenberg C; Gatidis S Eur J Radiol; 2020 Mar; 124():108804. PubMed ID: 31926387 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: Evaluation of the added prognostic value for overall survival and locoregional recurrence. van Timmeren JE; van Elmpt W; Leijenaar RTH; Reymen B; Monshouwer R; Bussink J; Paelinck L; Bogaert E; De Wagter C; Elhaseen E; Lievens Y; Hansen O; Brink C; Lambin P Radiother Oncol; 2019 Jul; 136():78-85. PubMed ID: 31015133 [TBL] [Abstract][Full Text] [Related]
11. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Tunali I; Hall LO; Napel S; Cherezov D; Guvenis A; Gillies RJ; Schabath MB Med Phys; 2019 Nov; 46(11):5075-5085. PubMed ID: 31494946 [TBL] [Abstract][Full Text] [Related]
12. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Fried DV; Tucker SL; Zhou S; Liao Z; Mawlawi O; Ibbott G; Court LE Int J Radiat Oncol Biol Phys; 2014 Nov; 90(4):834-42. PubMed ID: 25220716 [TBL] [Abstract][Full Text] [Related]
13. Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis. Haga A; Takahashi W; Aoki S; Nawa K; Yamashita H; Abe O; Nakagawa K Radiol Phys Technol; 2018 Mar; 11(1):27-35. PubMed ID: 29209915 [TBL] [Abstract][Full Text] [Related]
14. Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Pfaehler E; Mesotten L; Zhovannik I; Pieplenbosch S; Thomeer M; Vanhove K; Adriaensens P; Boellaard R Med Phys; 2021 Mar; 48(3):1226-1238. PubMed ID: 33368399 [TBL] [Abstract][Full Text] [Related]
15. CT and MRI radiomic features of lung cancer (NSCLC): comparison and software consistency. Bortolotto C; Pinto A; Brero F; Messana G; Cabini RF; Postuma I; Robustelli Test A; Stella GM; Galli G; Mariani M; Figini S; Lascialfari A; Filippi AR; Bottinelli OM; Preda L Eur Radiol Exp; 2024 Jun; 8(1):71. PubMed ID: 38880866 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Choe J; Lee SM; Do KH; Lee G; Lee JG; Lee SM; Seo JB Radiology; 2019 Aug; 292(2):365-373. PubMed ID: 31210613 [TBL] [Abstract][Full Text] [Related]
17. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Soufi M; Arimura H; Nagami N Med Phys; 2018 Nov; 45(11):5116-5128. PubMed ID: 30230556 [TBL] [Abstract][Full Text] [Related]