These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31918385)

  • 1. Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters.
    Sun J; Wei L; Yin R; Jiang F; Shang C
    Water Res; 2020 Mar; 171():115453. PubMed ID: 31918385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetically-mediated regeneration and reuse of core-shell Fe
    Sun J; Yang J; Liu Y; Guo M; Wen Q; Sun W; Yao J; Li Y; Jiang F
    Water Res; 2019 Jun; 157():621-629. PubMed ID: 31004978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J; Zhou J; Shang C; Kikkert GA
    Chemosphere; 2014 Dec; 117():324-9. PubMed ID: 25150683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide removal from sediment and water in box culverts/storm drains by iron-based granules.
    Sun JL; Shang C; Kikkert GA
    Water Sci Technol; 2013; 68(12):2626-31. PubMed ID: 24355850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive iron in marine sediments.
    Canfield DE
    Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM; Lentini CJ; Tang Y; Johnston DT; Wankel SD; Jardine PM
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis.
    Kenneke JF; Weber EI
    Environ Sci Technol; 2003 Feb; 37(4):713-20. PubMed ID: 12636269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.
    Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J
    Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.
    Nelson YM; Lion LW; Shuler ML; Ghiorse WC
    Environ Sci Technol; 2002 Feb; 36(3):421-5. PubMed ID: 11871557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coastal eutrophication thresholds: a matter of sediment microbial processes.
    Lehtoranta J; Ekholm P; Pitkänen H
    Ambio; 2009 Sep; 38(6):303-8. PubMed ID: 19860153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments.
    Lee S; O'Loughlin EJ; Kwon MJ
    J Environ Manage; 2021 Aug; 292():112756. PubMed ID: 33984641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge.
    Yin R; Peng J; Sun J; Li C; Xia D; Shang C
    Water Res; 2021 Sep; 203():117557. PubMed ID: 34418644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters.
    Matthies R; Aplin AC; Boyce AJ; Jarvis AP
    Sci Total Environ; 2012 Mar; 420():238-49. PubMed ID: 22326322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China.
    Sun Q; Sheng Y; Yang J; Di Bonito M; Mortimer RJG
    Environ Pollut; 2016 Dec; 219():588-595. PubMed ID: 27344087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese.
    Thamdrup B; Finster K; Hansen JW; Bak F
    Appl Environ Microbiol; 1993 Jan; 59(1):101-8. PubMed ID: 16348835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture.
    Meng T; Zhu MX; Ma WW; Gan ZX
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6460-6471. PubMed ID: 30623326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic sulfur-iron cycle promoted phosphorus mobilization in sediments driven by the algae decomposition.
    Zhang S; Zhao Y; Zhou C; Duan H; Wang G
    Ecotoxicology; 2021 Oct; 30(8):1662-1671. PubMed ID: 33263167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.