These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31918389)

  • 41. The extended Kalman filter for forecast of algal bloom dynamics.
    Mao JQ; Lee JH; Choi KW
    Water Res; 2009 Sep; 43(17):4214-24. PubMed ID: 19577268
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A data-driven global flood forecasting system for medium to large rivers.
    Palash W; Akanda AS; Islam S
    Sci Rep; 2024 Apr; 14(1):8979. PubMed ID: 38637638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tomographic imaging of dynamic objects with the ensemble Kalman filter.
    Butala MD; Frazin RA; Chen Y; Kamalabadi F
    IEEE Trans Image Process; 2009 Jul; 18(7):1573-87. PubMed ID: 19447717
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of fish catch in the Danube River based on long-term variability in environmental parameters and catch statistics.
    Smederevac-Lalić MM; Kalauzi AJ; Regner SB; Lenhardt MB; Naunovic ZZ; Hegediš AE
    Sci Total Environ; 2017 Dec; 609():664-671. PubMed ID: 28763663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.
    Zhang XL; Su GF; Chen JG; Raskob W; Yuan HY; Huang QY
    J Hazard Mater; 2015 Oct; 297():329-39. PubMed ID: 26026852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Joint Assimilation of Leaf Area Index and Soil Moisture from Sentinel-1 and Sentinel-2 Data into the WOFOST Model for Winter Wheat Yield Estimation.
    Pan H; Chen Z; Allard W; Ren J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrologic Remote Sensing and Land Surface Data Assimilation.
    Moradkhani H
    Sensors (Basel); 2008 May; 8(5):2986-3004. PubMed ID: 27879861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags.
    Jonsen ID; Patterson TA; Costa DP; Doherty PD; Godley BJ; Grecian WJ; Guinet C; Hoenner X; Kienle SS; Robinson PW; Votier SC; Whiting S; Witt MJ; Hindell MA; Harcourt RG; McMahon CR
    Mov Ecol; 2020; 8():31. PubMed ID: 32695402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River.
    Akomeah E; Chun KP; Lindenschmidt KE
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18239-51. PubMed ID: 26199003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time prediction of river chloride concentration using ensemble learning.
    Zhang Q; Li Z; Zhu L; Zhang F; Sekerinski E; Han JC; Zhou Y
    Environ Pollut; 2021 Dec; 291():118116. PubMed ID: 34537597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new river system modelling tool for sustainable operational management of water resources.
    Dutta D; Wilson K; Welsh WD; Nicholls D; Kim S; Cetin L
    J Environ Manage; 2013 May; 121():13-28. PubMed ID: 23518133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of stochastic approaches for forecasting river water quality.
    Ahmad S; Khan IH; Parida BP
    Water Res; 2001 Dec; 35(18):4261-6. PubMed ID: 11763026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analyzing the effects of observation function selection in ensemble Kalman filtering for epidemic models.
    Mitchell L; Arnold A
    Math Biosci; 2021 Sep; 339():108655. PubMed ID: 34186054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Ensemble Kalman Filter approach to assess the effects of hydrological variability, water diversion, and meteorological forcing on the total phosphorus concentration in a shallow reservoir.
    Zhang C; Yan Q; Kuczyńska-Kippen N; Gao X
    Sci Total Environ; 2020 Jul; 724():138215. PubMed ID: 32247130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kalman filter data assimilation: targeting observations and parameter estimation.
    Bellsky T; Kostelich EJ; Mahalov A
    Chaos; 2014 Jun; 24(2):024406. PubMed ID: 24985460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Forecasting global and multi-level thermospheric neutral density and ionospheric electron content by tuning models against satellite-based accelerometer measurements.
    Forootan E; Kosary M; Farzaneh S; Kodikara T; Vielberg K; Fernandez-Gomez I; Borries C; Schumacher M
    Sci Rep; 2022 Feb; 12(1):2095. PubMed ID: 35136103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward multi-day-ahead forecasting of suspended sediment concentration using ensemble models.
    Alizadeh MJ; Jafari Nodoushan E; Kalarestaghi N; Chau KW
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28017-28025. PubMed ID: 28993996
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water-sediment flow models for river reaches sediment related pollution control.
    Sil BS; Choudhury P
    J Environ Sci Eng; 2012 Jul; 54(3):331-44. PubMed ID: 24749192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Altimetry-derived surface water data assimilation over the Nile Basin.
    Khaki M; Awange J
    Sci Total Environ; 2020 Sep; 735():139008. PubMed ID: 32485444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ensemble modeling of E. coli in the Charles River, Boston, Massachusetts, USA.
    Hellweger FL
    Water Sci Technol; 2007; 56(6):39-46. PubMed ID: 17898442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.