These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31918588)

  • 21. Evaluating the thermal performance of a balloon-based renal sympathetic denervation system with array electrodes: a finite element study.
    Cheng Y; Liu H; Tian Z; Zhang M; Liu Y; Nan Q
    Electromagn Biol Med; 2021 Oct; 40(4):488-501. PubMed ID: 34352188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmembraneous irrigation of multipolar radiofrequency ablation catheters: induction of linear lesions encircling the pulmonary vein ostium without the risk of coagulum formation?
    Weiss C; Stewart M; Franzen O; Rostock T; Becker J; Skarda JR; Meinertz T; Willems S
    J Interv Card Electrophysiol; 2004 Jun; 10(3):199-209. PubMed ID: 15133356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation.
    Nakagawa H; Yamanashi WS; Pitha JV; Arruda M; Wang X; Ohtomo K; Beckman KJ; McClelland JH; Lazzara R; Jackman WM
    Circulation; 1995 Apr; 91(8):2264-73. PubMed ID: 7697856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictability of lesion durability for AF ablation using phased radiofrequency: Power, temperature, and duration impact creation of transmural lesions.
    Hocini M; Condie C; Stewart MT; Kirchhof N; Foell JD
    Heart Rhythm; 2016 Jul; 13(7):1521-6. PubMed ID: 26921762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments.
    Woo EJ; Tungjitkusolmun S; Cao H; Tsai JZ; Webster JG; Vorperian VR; Will JA
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):23-31. PubMed ID: 10646276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of electrode-tissue-coverage on RF lesion formation and local impedance: Insights from an ex vivo model.
    Bahlke F; Wachter A; Erhard N; Englert F; Krafft H; Popa M; Risse E; Kottmaier M; Telishevska M; Lengauer S; Lennerz C; Reents T; Hessling G; Deisenhofer I; Bourier F
    Pacing Clin Electrophysiol; 2023 Oct; 46(10):1170-1181. PubMed ID: 37616376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limitations of lesion quality estimated by ablation index: An in vitro study.
    Kawaji T; Hojo S; Kushiyama A; Nakatsuma K; Kaneda K; Kato M; Yokomatsu T; Miki S
    J Cardiovasc Electrophysiol; 2019 Jun; 30(6):926-933. PubMed ID: 30912209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation between denaturation time measured by optical coherence reflectometry and thermal lesion depth during radiofrequency cardiac ablation: Feasibility numerical study.
    González-Suárez A; Herranz D; Berjano E; Rubio-Guivernau JL; Margallo-Balbás E
    Lasers Surg Med; 2018 Mar; 50(3):222-229. PubMed ID: 29168554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Initial impedance decrease as an indicator of good catheter contact: insights from radiofrequency ablation with force sensing catheters.
    Reichlin T; Knecht S; Lane C; Kühne M; Nof E; Chopra N; Tadros TM; Reddy VY; Schaer B; John RM; Osswald S; Stevenson WG; Sticherling C; Michaud GF
    Heart Rhythm; 2014 Feb; 11(2):194-201. PubMed ID: 24177370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors.
    Huang HW
    Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous pace-ablate during CARTO-guided pulmonary vein isolation with a contact-force sensing radiofrequency ablation catheter.
    Barbhaiya CR; Aizer A; Knotts R; Bernstein S; Park D; Holmes D; Chinitz LA
    J Interv Card Electrophysiol; 2019 Mar; 54(2):119-124. PubMed ID: 30264289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of catheter movement and contact during application of radiofrequency energy on ablation lesion characteristics.
    Olson MD; Phreaner N; Schuller JL; Nguyen DT; Katz DF; Aleong RG; Tzou WS; Sung R; Varosy PD; Sauer WH
    J Interv Card Electrophysiol; 2013 Nov; 38(2):123-9. PubMed ID: 24022756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Area under the real-time contact force curve (force-time integral) predicts radiofrequency lesion size in an in vitro contractile model.
    Shah DC; Lambert H; Nakagawa H; Langenkamp A; Aeby N; Leo G
    J Cardiovasc Electrophysiol; 2010 Sep; 21(9):1038-43. PubMed ID: 20367658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of contact force on pulsed field ablation lesions in porcine cardiac tissue.
    Mattison L; Verma A; Tarakji KG; Reichlin T; Hindricks G; Sack KL; Önal B; Schmidt MM; Miklavčič D; Sigg DC
    J Cardiovasc Electrophysiol; 2023 Mar; 34(3):693-699. PubMed ID: 36640426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does the same lesion index mean the same efficacy and safety profile: influence of the differential power, time, and contact force on the lesion size and steam pops under the same lesion index.
    Narita M; Higuchi S; Kawano D; Sasaki W; Matsumoto K; Tanaka N; Mori H; Tsutsui K; Ikeda Y; Arai T; Nakano S; Kato R; Matsumoto K
    J Interv Card Electrophysiol; 2024 Jan; 67(1):147-155. PubMed ID: 37311981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of catheter-tissue contact force on lesion size during right ventricular outflow tract ablation in a swine model.
    Jiang JB; Li JY; Jiang ZY; Wang A; Huang Z; Xu HY; Shu CL; Li GJ; Zheng YS; He Y; Zhong GQ
    Chin Med J (Engl); 2020 Jul; 133(14):1680-1687. PubMed ID: 32496308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study.
    Irastorza RM; d'Avila A; Berjano E
    J Cardiovasc Electrophysiol; 2018 Feb; 29(2):322-327. PubMed ID: 28988468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-power, low-flow, short-ablation duration-the key to avoid collateral injury?
    Ali-Ahmed F; Goyal V; Patel M; Orelaru F; Haines DE; Wong WS
    J Interv Card Electrophysiol; 2019 Jun; 55(1):9-16. PubMed ID: 30377925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interrelation of tissue temperature versus flow velocity in two different kinds of temperature controlled catheter radiofrequency energy applications.
    Grumbrecht S; Neuzner J; Pitschner HF
    J Interv Card Electrophysiol; 1998 Jun; 2(2):211-9. PubMed ID: 9870015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The LETR-Principle: a novel method to assess electrode-tissue contact in radiofrequency ablation.
    Eick OJ; Wittkampf FH; Bronneberg T; Schumacher B
    J Cardiovasc Electrophysiol; 1998 Nov; 9(11):1180-5. PubMed ID: 9835262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.